Optically and magnetically addressable valley pseudospin of interlayer excitons in bilayer MoS2


الملخص بالإنكليزية

Interlayer valley excitons in bilayer MoS2 feature concurrently large oscillator strength and long lifetime, and hence represent an advantageous scenario for valleytronic applications. However, control of valley pseudospin of interlayer excitons in pristine bilayer MoS2, which lies at the heart of valleytronics, has remained elusive. Here we report the observation of highly circularly polarized photoluminescence from interlayer excitons of bilayer MoS2 with both optical and magnetic addressability. Under excitation of circularly polarized light near exciton resonance, interlayer excitons of bilayer MoS2 show a near-unity, but negative circular polarization. Significantly, by breaking time-reversal symmetry with an out-of-plane magnetic field, a record level of spontaneous valley polarization (7.7%/Tesla) is identified for interlayer excitons in bilayer MoS2. The giant valley polarization of the interlayer excitons in bilayer MoS2, together with the feasibility of electrical/optical/magnetic control and strong oscillator strength, provides a firm basis for the development of next-generation electronic and optoelectronic applications.

تحميل البحث