ﻻ يوجد ملخص باللغة العربية
Recent image classification algorithms, by learning deep features from large-scale datasets, have achieved significantly better results comparing to the classic feature-based approaches. However, there are still various challenges of image classifications in practice, such as classifying noisy image or image-set queries and training deep image classification models over the limited-scale dataset. Instead of applying generic deep features, the model-based approaches can be more effective and data-efficient for robust image and image-set classification tasks, as various image priors are exploited for modeling the inter- and intra-set data variations while preventing over-fitting. In this work, we propose a novel Joint Statistical and Spatial Sparse representation, dubbed textit{J3S}, to model the image or image-set data for classification, by reconciling both their local patch structures and global Gaussian distribution mapped into Riemannian manifold. To the best of our knowledge, no work to date utilized both global statistics and local patch structures jointly via joint sparse representation. We propose to solve the joint sparse coding problem based on the J3S model, by coupling the local and global image representations using joint sparsity. The learned J3S models are used for robust image and image-set classification. Experiments show that the proposed J3S-based image classification scheme outperforms the popular or state-of-the-art competing methods over FMD, UIUC, ETH-80 and YTC databases.
We propose a novel image set classification technique using linear regression models. Downsampled gallery image sets are interpreted as subspaces of a high dimensional space to avoid the computationally expensive training step. We estimate regression
Nowadays, deep learning methods, especially the convolutional neural networks (CNNs), have shown impressive performance on extracting abstract and high-level features from the hyperspectral image. However, general training process of CNNs mainly cons
The inclusion of spatial information into spectral classifiers for fine-resolution hyperspectral imagery has led to significant improvements in terms of classification performance. The task of spectral-spatial hyperspectral image classification has r
Convolutional Neural Networks (CNNs) are generally prone to noise interruptions, i.e., small image noise can cause drastic changes in the output. To suppress the noise effect to the final predication, we enhance CNNs by replacing max-pooling, strided
In this paper, a novel statistical metric learning is developed for spectral-spatial classification of the hyperspectral image. First, the standard variance of the samples of each class in each batch is used to decrease the intra-class variance withi