ﻻ يوجد ملخص باللغة العربية
The (non-uniform) sparsest cut problem is the following graph-partitioning problem: given a supply graph, and demands on pairs of vertices, delete some subset of supply edges to minimize the ratio of the supply edges cut to the total demand of the pairs separated by this deletion. Despite much effort, there are only a handful of nontrivial classes of supply graphs for which constant-factor approximations are known. We consider the problem for planar graphs, and give a $(2+varepsilon)$-approximation algorithm that runs in quasipolynomial time. Our approach defines a new structural decomposition of an optimal solution using a patching primitive. We combine this decomposition with a Sherali-Adams-style linear programming relaxation of the problem, which we then round. This should be compared with the polynomial-time approximation algorithm of Rao (1999), which uses the metric linear programming relaxation and $ell_1$-embeddings, and achieves an $O(sqrt{log n})$-approximation in polynomial time.
Suppose that we are given an arbitrary graph $G=(V, E)$ and know that each edge in $E$ is going to be realized independently with some probability $p$. The goal in the stochastic matching problem is to pick a sparse subgraph $Q$ of $G$ such that the
Given a graph, the sparsest cut problem asks for a subset of vertices whose edge expansion (the normalized cut given by the subset) is minimized. In this paper, we study a generalization of this problem seeking for $ k $ disjoint subsets of vertices
We study the classical Node-Disjoint Paths (NDP) problem: given an $n$-vertex graph $G$ and a collection $M={(s_1,t_1),ldots,(s_k,t_k)}$ of pairs of vertices of $G$ called demand pairs, find a maximum-cardinality set of node-disjoint paths connecting
We give improved pseudorandom generators (PRGs) for Lipschitz functions of low-degree polynomials over the hypercube. These are functions of the form psi(P(x)), where P is a low-degree polynomial and psi is a function with small Lipschitz constant. P
We study the prize-collecting version of the Node-weighted Steiner Tree problem (NWPCST) restricted to planar graphs. We give a new primal-dual Lagrangian-multiplier-preserving (LMP) 3-approximation algorithm for planar NWPCST. We then show a ($2.88