ﻻ يوجد ملخص باللغة العربية
In this paper, we extend a uniformity result of Dimitrov-Gao-Habegger to dimension two and use it to get a uniform bound on the set of all quadratic points for non-hyperelliptic non-bielliptic curves in terms of the Mordell-Weil rank.
Projective varieties with ample cotangent bundle satisfy many notions of hyperbolicity, and one goal of this paper is to discuss generalizations to quasi-projective varieties. A major hurdle is that the naive generalization fails, i.e. the log cotang
We prove equidistribution of Weierstrass points on Berkovich curves. Let $X$ be a smooth proper curve of positive genus over a complete algebraically closed non-Archimedean field $K$ of equal characteristic zero with a non-trivial valuation. Let
Let $C$ be a hyperelliptic curve of genus $g$ over the fraction field $K$ of a discrete valuation ring $R$. Assume that the residue field $k$ of $R$ is perfect and that $mathop{textrm{char}} k eq 2$. Assume that the Weierstrass points of $C$ are $K$
We construct higher-dimensional Calabi-Yau varieties defined over a given number field with Zariski dense sets of rational points. We give two elementary constructions in arbitrary dimensions as well as another construction in dimension three which i
Because of its ineffectiveness, the usual arithmetic Hilbert-Samuel formula is not applicable in the context of Diophantine Approximation. In order to overcome this difficulty, the present paper presents explicit estimates for arithmetic Hilbert Functions of closed subvarieties in projective space.