Ab initio molecular dynamics simulations using VASP was employed to calculate threshold displacement energies and defect formation energies of Y4Zr3O12 {delta}-phase, which is the most commonly found phase in newly developed Zr and Al-containing ODS steels. The Threshold displacement energy (Ed) values are determined to be 28 eV for Zr3a primary knock-on atom along [111] direction, 40 eV for Zr18f atoms along [111] direction and 50 eV for Y recoils along [110] direction. Minimum Ed values for O and O atoms are 13 eV and 16 eV respectively. The displacement energies of anions are much smaller compared to cations, thus suggesting that anion disorder is more probable than cation disorder. All directions except the direction in which inherent structural vacancies are aligned, cations tend to occupy another cation site. The threshold displacement energies are larger than that of Y2Ti2O7, the conventional precipitates in Ti containing ODS steels. Due to the partial occupancy of Y and Zr in the 18f position, the antisite formation energy is negligibly small, and it may help the structure to withstand more disorder upon irradiation. These results convey that Zr/Al ODS alloys, which have better corrosion resistance properties compared to the conventional Ti-ODS alloys, may also possess superior radiation resistance.