ﻻ يوجد ملخص باللغة العربية
Discrete conformal structure on polyhedral surfaces is a discrete analogue of the smooth conformal structure on surfaces that assigns discrete metrics by scalar functions defined on vertices. In this paper, we introduce combinatorial $alpha$-curvature for discrete conformal structures on polyhedral surfaces, which is a parameterized generalization of the classical combinatorial curvature. Then we prove the local and global rigidity of combinatorial $alpha$-curvature with respect to discrete conformal structures on polyhedral surfaces, which confirms parameterized Glickenstein rigidity conjecture. To study the Yamabe problem for combinatorial $alpha$-curvature, we introduce combinatorial $alpha$-Ricci flow for discrete conformal structures on polyhedral surfaces, which is a generalization of Chow-Luos combinatorial Ricci flow for Thurstons circle packings and Luos combinatorial Yamabe flow for vertex scaling on polyhedral surfaces. To handle the potential singularities of the combinatorial $alpha$-Ricci flow, we extend the flow through the singularities by extending the inner angles in triangles by constants. Under the existence of a discrete conformal structure with prescribed combinatorial curvature, the solution of extended combinatorial $alpha$-Ricci flow is proved to exist for all time and converge exponentially fast for any initial value. This confirms a parameterized generalization of another conjecture of Glickenstein on the convergence of combinatorial Ricci flow, gives an almost equivalent characterization of the solvability of Yamabe problem for combinatorial $alpha$-curvature in terms of combinatorial $alpha$-Ricci flow and provides an effective algorithm for finding discrete conformal structures with prescribed combinatorial $alpha$-curvatures.
This paper investigates the combinatorial $alpha$-curvature for vertex scaling of piecewise hyperbolic metrics on polyhedral surfaces, which is a parameterized generalization of the classical combinatorial curvature. A discrete uniformization theorem
Using the fractional discrete Laplace operator for triangle meshes, we introduce a fractional combinatorial Calabi flow for discrete conformal structures on surfaces, which unifies and generalizes Chow-Luos combinatorial Ricci flow for Thurstons circ
A discrete conformality for hyperbolic polyhedral surfaces is introduced in this paper. This discrete conformality is shown to be computable. It is proved that each hyperbolic polyhedral metric on a closed surface is discrete conformal to a unique hy
This paper studies the combinatorial Yamabe flow on hyperbolic surfaces with boundary. It is proved by applying a variational principle that the length of boundary components is uniquely determined by the combinatorial conformal factor. The combinato
The paper proves a result on the convergence of discrete conformal maps to the Riemann mappings for Jordan domains. It is a counterpart of Rodin-Sullivans theorem on convergence of circle packing mappings to the Riemann mapping in the new setting of