ﻻ يوجد ملخص باللغة العربية
Though network sparsity emerges as a promising direction to overcome the drastically increasing size of neural networks, it remains an open problem to concurrently maintain model accuracy as well as achieve significant speedups on general CPUs. In this paper, we propose one novel concept of $1times N$ block sparsity pattern (block pruning) to break this limitation. In particular, consecutive $N$ output kernels with the same input channel index are grouped into one block, which serves as a basic pruning granularity of our pruning pattern. Our $1 times N$ sparsity pattern prunes these blocks considered unimportant. We also provide a workflow of filter rearrangement that first rearranges the weight matrix in the output channel dimension to derive more influential blocks for accuracy improvements, and then applies similar rearrangement to the next-layer weights in the input channel dimension to ensure correct convolutional operations. Moreover, the output computation after our $1 times N$ block sparsity can be realized via a parallelized block-wise vectorized operation, leading to significant speedups on general CPUs-based platforms. The efficacy of our pruning pattern is proved with experiments on ILSVRC-2012. For example, in the case of 50% sparsity and $N=4$, our pattern obtains about 3.0% improvements over filter pruning in the top-1 accuracy of MobileNet-V2. Meanwhile, it obtains 56.04ms inference savings on Cortex-A7 CPU over weight pruning. Code is available at https://github.com/lmbxmu/1xN.
Cross-modal retrieval aims to enable flexible retrieval experience by combining multimedia data such as image, video, text, and audio. One core of unsupervised approaches is to dig the correlations among different object representations to complete s
Accelerating the inference speed of CNNs is critical to their deployment in real-world applications. Among all the pruning approaches, those implementing a sparsity learning framework have shown to be effective as they learn and prune the models in a
Let $mathsf k$ be a local field. Let $I_ u$ and $I_{ u}$ be smooth principal series representations of $mathrm{GL}_n(mathsf k)$ and $mathrm{GL}_{n-1}(mathsf k)$ respectively. The Rankin-Selberg integrals yield a continuous bilinear map $I_ utimes I_{
Deep learning for recommendation data is the one of the most pervasive and challenging AI workload in recent times. State-of-the-art recommendation models are one of the largest models rivalling the likes of GPT-3 and Switch Transformer. Challenges i
As a unique and promising biometric, video-based gait recognition has broad applications. The key step of this methodology is to learn the walking pattern of individuals, which, however, often suffers challenges to extract the behavioral feature from