ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-body correlations in nonlinear response of correlated quantum liquid

238   0   0.0 ( 0 )
 نشر من قبل Tokuro Hata
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Behavior of quantum liquids is a fascinating topic in physics. Even in a strongly correlated case, the linear response of a given system to an external field is described by the fluctuation-dissipation relations based on the two-body correlations in the equilibrium. However, to explore nonlinear non-equilibrium behaviors of the system beyond this well-established regime, the role of higher order correlations starting from the three-body correlations must be revealed. In this work, we experimentally investigate a controllable quantum liquid realized in a Kondo-correlated quantum dot and prove the relevance of the three-body correlations in the nonlinear conductance at finite magnetic field, which validates the recent Fermi liquid theory extended to the non-equilibrium regime.



قيم البحث

اقرأ أيضاً

Exploiting inversion symmetry breaking (ISB) in systems with strong spin-orbit coupling promises control of spin through electric fields - crucial to achieve miniaturization in spintronic devices. Delivering on this promise requires a two-dimensional electron gas with a spin precession length shorter than the spin coherence length and a large spin splitting so that spin manipulation can be achieved over length scales of nanometers. Recently, the transition metal oxide terminations of delafossite oxides were found to exhibit a large Rashba spin splitting dominated by ISB. In this limit, the Fermi surface exhibits the same spin texture as for weak ISB, but the orbital texture is completely different, raising questions about the effect on quasiparticle scattering. We demonstrate that the spin-orbital selection rules relevant for conventional Rashba system are obeyed as true spin selection rules in this correlated electron liquid and determine its spin coherence length from quasiparticle interference imaging.
We report on angle-dependent measurements of the sheet resistances and Hall coefficients of electron liquids in SmTiO3/SrTiO3/SmTiO3 quantum well structures, which were grown by molecular beam epitaxy on (001) DyScO3. We compare their transport prope rties with those of similar structures grown on LSAT [(La0.3Sr0.7)(Al0.65Ta0.35)O3]. On DyScO3, planar defects normal to the quantum wells lead to a strong in-plane anisotropy in the transport properties. This allows for quantifying the role of defects in transport. In particular, we investigate differences in the longitudinal and Hall scattering rates, which is a non-Fermi liquid phenomenon known as lifetime separation. The residuals in both the longitudinal resistance and Hall angle were found to depend on the relative orientations of the transport direction to the planar defects. The Hall angle exhibited a robust T2 temperature dependence along all directions, whereas no simple power law could describe the temperature dependence of the longitudinal resistances. Remarkably, the degree of the carrier lifetime separation, as manifested in the distinctly different temperature dependences and diverging residuals near a critical quantum well thickness, was completely insensitive to disorder. The results allow for a clear distinction between disorder-induced contributions to the transport and intrinsic, non-Fermi liquid phenomena, which includes the lifetime separation.
In this paper, the quantum phase transition between superfluid state and Mott-insulator state is studied based on an extended Bose-Hubbard model with two- and three-body on-site interactions. By employing the mean-field approximation we find the exte nsion of the insulating lobes and the existence of a fixed point in three dimensional phase space. We investigate the link between experimental parameters and theoretical variables. The possibility to obverse our results through some experimental effects in optically trapped Bose-Einstein Condensates(BEC) is also discussed.
Universal properties of entangled many-body states are controlled by their symmetry and quantum fluctuations. By magnetic-field tuning of the spin-orbital degeneracy in a Kondo-correlated quantum dot, we have modified quantum fluctuations to directly measure their influence on the many-body properties along the crossover from $SU(4)$ to $SU(2)$ symmetry of the ground state. High-sensitive current noise measurements combined with the non-equilibrium Fermi liquid theory clarify that the Kondo resonance and electron correlations are enhanced as the fluctuations, measured by the Wilson ratio, increase along the symmetry crossover. Our achievement demonstrates that non-linear noise constitutes a measure of quantum fluctuations that can be used to tackle quantum phase transitions.
72 - R. Scheibner 2004
The thermopower of a Kondo-correlated gate-defined quantum dot is studied using a current heating technique. In the presence of spin correlations the thermopower shows a clear deviation from the semiclassical Mott relation between thermopower and con ductivity. The strong thermopower signal indicates a significant asymmetry in the spectral density of states of the Kondo resonance with respect to the Fermi energies of the reservoirs. The observed behavior can be explained within the framework of an Anderson-impurity model. Keywords: Thermoelectric and thermomagnetic effects, Coulomb blockade, single electron tunneling, Kondo-effect PACS Numbers: 72.20.Pa, 73.23.Hk
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا