ﻻ يوجد ملخص باللغة العربية
Let $mathcal{D}$ be a weighted oriented graph and $I(mathcal{D})$ be its edge ideal. In this paper, we show that all the symbolic and ordinary powers of $I(mathcal{D})$ coincide when $mathcal{D}$ is a weighted oriented certain class of tree. Finally, we give necessary and sufficient conditions for the equality of ordinary and symbolic powers of naturally oriented lines.
We compute the Betti numbers for all the powers of initial and final lexsegment edge ideals. For the powers of the edge ideal of an anti-$d-$path, we prove that they have linear quotients and we characterize the normally torsion-free ideals. We deter
In this article, we prove that for several classes of graphs, the Castelnuovo-Mumford regularity of symbolic powers of their edge ideals coincide with that of their ordinary powers.
We characterize unmixed and Cohen-Macaulay edge-weighted edge ideals of very well-covered graphs. We also provide examples of oriented graphs which have unmixed and non-Cohen-Macaulay vertex-weighted edge ideals, while the edge ideal of their underly
In this paper, we compute the regularity and Hilbert series of symbolic powers of the cover ideal of a graph $G$ when $G$ is either a crown graph or a complete multipartite graph. We also compute the multiplicity of symbolic powers of cover ideals in terms of the number of edges.
Let $mathcal{D}$ be a weighted oriented graph and let $I(mathcal{D})$ be its edge ideal. Under a natural condition that the underlying (undirected) graph of $mathcal{D}$ contains a perfect matching consisting of leaves, we provide several equivalent