ترغب بنشر مسار تعليمي؟ اضغط هنا

On uniqueness of multi-bubble blow-up solutions and multi-solitons to $L^2$-critical nonlinear Schrodinger equations

201   0   0.0 ( 0 )
 نشر من قبل Deng Zhang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We are concerned with the focusing $L^2$-critical nonlinear Schrodinger equations in $mathbb{R}^d$ for $d=1,2$. The uniqueness is proved for a large energy class of multi-bubble blow-up solutions, which converge to a sum of $K$ pseudo-conformal blow-up solutions particularly with low rate $(T-t)^{0+}$, as $tto T$, $1leq K<infty$. Moreover, we also prove the uniqueness in the energy class of multi-solitons which converge to a sum of $K$ solitary waves with convergence rate $(1/t)^{2+}$, as $tto infty$. The uniqueness class is further enlarged to contain the multi-solitons with even lower convergence rate $(1/t)^{frac 12+}$ in the pseudo-conformal space. The proof is mainly based on the pseudo-conformal invariance and the monotonicity properties of several functionals adapted to the multi-bubble case, the latter is crucial towards the upgradation of the convergence to the fast exponential decay rate.



قيم البحث

اقرأ أيضاً

98 - Yiming Su , Deng Zhang 2020
We are concerned with the multi-bubble blow-up solutions to rough nonlinear Schrodinger equations in the focusing mass-critical case. In both dimensions one and two, we construct the finite time multi-bubble solutions, which concentrate at $K$ distin ct points, $1leq K<infty$, and behave asymptotically like a sum of pseudo-conformal blow-up solutions in the pseudo-conformal space $Sigma$ near the blow-up time. The upper bound of the asymptotic behavior is closely related to the flatness of noise at blow-up points. Moreover, we prove the conditional uniqueness of multi-bubble solutions in the case where the asymptotic behavior in the energy space $H^1$ is of the order $(T-t)^{3+zeta}$, $zeta>0$. These results are also obtained for nonlinear Schrodinger equations with lower order perturbations, particularly, in the absence of the classical pseudo-conformal symmetry and the conversation law of energy. The existence results are applicable to the canonical deterministic nonlinear Schrodinger equation and complement the previous work [43]. The conditional uniqueness results are new in both the stochastic and deterministic case.
We study boundary blow-up solutions of semilinear elliptic equations $Lu=u_+^p$ with $p>1$, or $Lu=e^{au}$ with $a>0$, where $L$ is a second order elliptic operator with measurable coefficients. Several uniqueness theorems and an existence theorem are obtained.
In this short note, we present a construction for the log-log blow up solutions to focusing mass-critical stochastic nonlinear Schroidnger equations with multiplicative noises. The solution is understood in the sense of controlled rough path as in cite{SZ20}.
In this work we shall review some of our recent results concerning unique continuation properties of solutions of Schrodinger equations. In this equations we include linear ones with a time depending potential and semi-linear ones.
We are concerned with the following nonlinear Schrodinger equation $$-varepsilon^2Delta u+ V(x)u=|u|^{p-2}u,~uin H^1(R^N),$$ where $Ngeq 3$, $2<p<frac{2N}{N-2}$. For $varepsilon$ small enough and a class of $V(x)$, we show the uniqueness of positiv e multi-bump solutions concentrating at $k$ different critical points of $V(x)$ under certain assumptions on asymptotic behavior of $V(x)$ and its first derivatives near those points. The degeneracy of critical points is allowed in this paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا