ﻻ يوجد ملخص باللغة العربية
Planar thermal equilibration is studied using direct numerical simulations of ultracold two-dimensional (2D) ion crystals in a Penning trap with a rotating wall. The large magnetic field of the trap splits the modes that describe in-plane motion of the ions into two branches: High frequency cyclotron modes dominated by kinetic energy and low frequency $mathbf{E times B}$ modes dominated by potential energy associated with thermal position displacements. Using an eigenmode analysis we extract the equilibration rate between these two branches as a function of the ratio of the frequencies that characterize the two branches and observe this equilibration rate to be exponentially suppressed as the ratio increases. Under experimental conditions relevant for current work at NIST, the predicted equilibration time is orders of magnitude longer than any relevant experimental timescales. We also study the coupling rate dependence on the thermal temperature and the number of ions. Besides, we show how increasing the rotating wall strength improves crystal stability. These details of in-plane mode dynamics help set the stage for developing strategies to efficiently cool the in-plane modes and improve the performance of single-plane ion crystals for quantum information processing.
Penning traps, with their ability to control planar crystals of tens to hundreds of ions, are versatile quantum simulators. Thermal occupations of the motional drumhead modes, transverse to the plane of the ion crystal, degrade the quality of quantum
Two-dimensional crystals of ions stored in Penning traps are a leading platform for quantum simulation and sensing experiments. For small amplitudes, the out-of-plane motion of such crystals can be described by a discrete set of normal modes called t
A direct numerical simulation of many interacting ions in a Penning trap with a rotating wall is presented. The ion dynamics is modelled classically. Both axial and planar Doppler laser cooling are modeled using stochastic momentum impulses based on
We describe a versatile planar Penning trap structure, which allows to dynamically modify the trapping conguration almost arbitrarily. The trap consists of 37 hexagonal electrodes, each with a circumcirle-diameter of 300 m, fabricated in a gold-on-sa
We report on the realisation of a chip-based multipole ion trap manufactured using micro-electromechanical systems (MEMS) technology. It provides ion confinement in an almost field-free volume between two planes of radiofrequency electrodes, deposite