ﻻ يوجد ملخص باللغة العربية
In a recent paper, Iba~nez-Azpiroz et al. [Phys. Rev. B 97, 245143 (2018)] derive a band-truncation-error-free formula for calculating the generalized derivative of the interband dipole matrix using Wannier interpolation. In practice, the denominators involving intermediate states are regularized by introducing a finite broadening parameter. In this Comment, I show that when a finite broadening parameter is used, a correction term must be added to the generalized derivative to obtain results that are independent of the phase convention for the Bloch sums.
Several research groups have recently reported {em ab initio} calculations of the melting properties of metals based on density functional theory, but there have been unexpectedly large disagreements between results obtained by different approaches.
There is a continuous search for solid-state spin qubits operating at room temperature with excitation in the IR communication bandwidth. Recently we have introduced the photoelectric detection of magnetic resonance (PDMR) to read the electron spin s
We describe a simple method to determine, from ab initio calculations, the complete orientation-dependence of interfacial free energies in solid-state crystalline systems. We illustrate the method with an application to precipitates in the Al-Ti allo
Wannier tight-binding models are effective models constructed from first-principles calculations. As such, they bridge a gap between the accuracy of first-principles calculations and the computational simplicity of effective models. In this work, we
A modified core-to-valence band maximum approach is applied to calculate band offsets of strained III/V semiconductor hetero junctions. The method is used for the analysis of (In,Ga)As/GaAs/Ga(As,Sb) multi-quantum well structures. The obtained offset