ترغب بنشر مسار تعليمي؟ اضغط هنا

FoveaTer: Foveated Transformer for Image Classification

83   0   0.0 ( 0 )
 نشر من قبل Aditya Jonnalagadda
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many animals and humans process the visual field with a varying spatial resolution (foveated vision) and use peripheral processing to make eye movements and point the fovea to acquire high-resolution information about objects of interest. This architecture results in computationally efficient rapid scene exploration. Recent progress in vision Transformers has brought about new alternatives to the traditionally convolution-reliant computer vision systems. However, these models do not explicitly model the foveated properties of the visual system nor the interaction between eye movements and the classification task. We propose foveated Transformer (FoveaTer) model, which uses pooling regions and saccadic movements to perform object classification tasks using a vision Transformer architecture. Our proposed model pools the image features using squared pooling regions, an approximation to the biologically-inspired foveated architecture, and uses the pooled features as an input to a Transformer Network. It decides on the following fixation location based on the attention assigned by the Transformer to various locations from previous and present fixations. The model uses a confidence threshold to stop scene exploration, allowing to dynamically allocate more fixation/computational resources to more challenging images. We construct an ensemble model using our proposed model and unfoveated model, achieving an accuracy 1.36% below the unfoveated model with 22% computational savings. Finally, we demonstrate our models robustness against adversarial attacks, where it outperforms the unfoveated model.



قيم البحث

اقرأ أيضاً

Existing deep learning methods for diagnosis of gastric cancer commonly use convolutional neural network. Recently, the Visual Transformer has attracted great attention because of its performance and efficiency, but its applications are mostly in the field of computer vision. In this paper, a multi-scale visual transformer model, referred to as GasHis-Transformer, is proposed for Gastric Histopathological Image Classification (GHIC), which enables the automatic classification of microscopic gastric images into abnormal and normal cases. The GasHis-Transformer model consists of two key modules: A global information module and a local information module to extract histopathological features effectively. In our experiments, a public hematoxylin and eosin (H&E) stained gastric histopathological dataset with 280 abnormal and normal images are divided into training, validation and test sets by a ratio of 1 : 1 : 2. The GasHis-Transformer model is applied to estimate precision, recall, F1-score and accuracy on the test set of gastric histopathological dataset as 98.0%, 100.0%, 96.0% and 98.0%, respectively. Furthermore, a critical study is conducted to evaluate the robustness of GasHis-Transformer, where ten different noises including four adversarial attack and six conventional image noises are added. In addition, a clinically meaningful study is executed to test the gastrointestinal cancer identification performance of GasHis-Transformer with 620 abnormal images and achieves 96.8% accuracy. Finally, a comparative study is performed to test the generalizability with both H&E and immunohistochemical stained images on a lymphoma image dataset and a breast cancer dataset, producing comparable F1-scores (85.6% and 82.8%) and accuracies (83.9% and 89.4%), respectively. In conclusion, GasHisTransformer demonstrates high classification performance and shows its significant potential in the GHIC task.
The recently developed vision transformer (ViT) has achieved promising results on image classification compared to convolutional neural networks. Inspired by this, in this paper, we study how to learn multi-scale feature representations in transforme r models for image classification. To this end, we propose a dual-branch transformer to combine image patches (i.e., tokens in a transformer) of different sizes to produce stronger image features. Our approach processes small-patch and large-patch tokens with two separate branches of different computational complexity and these tokens are then fused purely by attention multiple times to complement each other. Furthermore, to reduce computation, we develop a simple yet effective token fusion module based on cross attention, which uses a single token for each branch as a query to exchange information with other branches. Our proposed cross-attention only requires linear time for both computational and memory complexity instead of quadratic time otherwise. Extensive experiments demonstrate that our approach performs better than or on par with several concurrent works on vision transformer, in addition to efficient CNN models. For example, on the ImageNet1K dataset, with some architectural changes, our approach outperforms the recent DeiT by a large margin of 2% with a small to moderate increase in FLOPs and model parameters. Our source codes and models are available at url{https://github.com/IBM/CrossViT}.
Transformer achieves remarkable successes in understanding 1 and 2-dimensional signals (e.g., NLP and Image Content Understanding). As a potential alternative to convolutional neural networks, it shares merits of strong interpretability, high discrim inative power on hyper-scale data, and flexibility in processing varying length inputs. However, its encoders naturally contain computational intensive operations such as pair-wise self-attention, incurring heavy computational burden when being applied on the complex 3-dimensional video signals. This paper presents Token Shift Module (i.e., TokShift), a novel, zero-parameter, zero-FLOPs operator, for modeling temporal relations within each transformer encoder. Specifically, the TokShift barely temporally shifts partial [Class] token features back-and-forth across adjacent frames. Then, we densely plug the module into each encoder of a plain 2D vision transformer for learning 3D video representation. It is worth noticing that our TokShift transformer is a pure convolutional-free video transformer pilot with computational efficiency for video understanding. Experiments on standard benchmarks verify its robustness, effectiveness, and efficiency. Particularly, with input clips of 8/12 frames, the TokShift transformer achieves SOTA precision: 79.83%/80.40% on the Kinetics-400, 66.56% on EGTEA-Gaze+, and 96.80% on UCF-101 datasets, comparable or better than existing SOTA convolutional counterparts. Our code is open-sourced in: https://github.com/VideoNetworks/TokShift-Transformer.
Automatic captioning of images is a task that combines the challenges of image analysis and text generation. One important aspect in captioning is the notion of attention: How to decide what to describe and in which order. Inspired by the successes i n text analysis and translation, previous work have proposed the textit{transformer} architecture for image captioning. However, the structure between the textit{semantic units} in images (usually the detected regions from object detection model) and sentences (each single word) is different. Limited work has been done to adapt the transformers internal architecture to images. In this work, we introduce the textbf{textit{image transformer}}, which consists of a modified encoding transformer and an implicit decoding transformer, motivated by the relative spatial relationship between image regions. Our design widen the original transformer layers inner architecture to adapt to the structure of images. With only regions feature as inputs, our model achieves new state-of-the-art performance on both MSCOCO offline and online testing benchmarks.
In image fusion, images obtained from different sensors are fused to generate a single image with enhanced information. In recent years, state-of-the-art methods have adopted Convolution Neural Networks (CNNs) to encode meaningful features for image fusion. Specifically, CNN-based methods perform image fusion by fusing local features. However, they do not consider long-range dependencies that are present in the image. Transformer-based models are designed to overcome this by modeling the long-range dependencies with the help of self-attention mechanism. This motivates us to propose a novel Image Fusion Transformer (IFT) where we develop a transformer-based multi-scale fusion strategy that attends to both local and long-range information (or global context). The proposed method follows a two-stage training approach. In the first stage, we train an auto-encoder to extract deep features at multiple scales. In the second stage, multi-scale features are fused using a Spatio-Transformer (ST) fusion strategy. The ST fusion blocks are comprised of a CNN and a transformer branch which capture local and long-range features, respectively. Extensive experiments on multiple benchmark datasets show that the proposed method performs better than many competitive fusion algorithms. Furthermore, we show the effectiveness of the proposed ST fusion strategy with an ablation analysis. The source code is available at: https://github.com/Vibashan/Image-Fusion-Transformer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا