ترغب بنشر مسار تعليمي؟ اضغط هنا

An Attention Free Transformer

87   0   0.0 ( 0 )
 نشر من قبل Hanlin Goh
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce Attention Free Transformer (AFT), an efficient variant of Transformers that eliminates the need for dot product self attention. In an AFT layer, the key and value are first combined with a set of learned position biases, the result of which is multiplied with the query in an element-wise fashion. This new operation has a memory complexity linear w.r.t. both the context size and the dimension of features, making it compatible to both large input and model sizes. We also introduce AFT-local and AFT-conv, two model variants that take advantage of the idea of locality and spatial weight sharing while maintaining global connectivity. We conduct extensive experiments on two autoregressive modeling tasks (CIFAR10 and Enwik8) as well as an image recognition task (ImageNet-1K classification). We show that AFT demonstrates competitive performance on all the benchmarks, while providing excellent efficiency at the same time.



قيم البحث

اقرأ أيضاً

Transformers provide a class of expressive architectures that are extremely effective for sequence modeling. However, the key limitation of transformers is their quadratic memory and time complexity $mathcal{O}(L^2)$ with respect to the sequence leng th in attention layers, which restricts application in extremely long sequences. Most existing approaches leverage sparsity or low-rank assumptions in the attention matrix to reduce cost, but sacrifice expressiveness. Instead, we propose Combiner, which provides full attention capability in each attention head while maintaining low computation and memory complexity. The key idea is to treat the self-attention mechanism as a conditional expectation over embeddings at each location, and approximate the conditional distribution with a structured factorization. Each location can attend to all other locations, either via direct attention, or through indirect attention to abstractions, which are again conditional expectations of embeddings from corresponding local regions. We show that most sparse attention patterns used in existing sparse transformers are able to inspire the design of such factorization for full attention, resulting in the same sub-quadratic cost ($mathcal{O}(Llog(L))$ or $mathcal{O}(Lsqrt{L})$). Combiner is a drop-in replacement for attention layers in existing transformers and can be easily implemented in common frameworks. An experimental evaluation on both autoregressive and bidirectional sequence tasks demonstrates the effectiveness of this approach, yielding state-of-the-art results on several image and text modeling tasks.
148 - Zhiwei Wang , Yao Ma , Zitao Liu 2019
Recurrent Neural Networks have long been the dominating choice for sequence modeling. However, it severely suffers from two issues: impotent in capturing very long-term dependencies and unable to parallelize the sequential computation procedure. Ther efore, many non-recurrent sequence models that are built on convolution and attention operations have been proposed recently. Notably, models with multi-head attention such as Transformer have demonstrated extreme effectiveness in capturing long-term dependencies in a variety of sequence modeling tasks. Despite their success, however, these models lack necessary components to model local structures in sequences and heavily rely on position embeddings that have limited effects and require a considerable amount of design efforts. In this paper, we propose the R-Transformer which enjoys the advantages of both RNNs and the multi-head attention mechanism while avoids their respective drawbacks. The proposed model can effectively capture both local structures and global long-term dependencies in sequences without any use of position embeddings. We evaluate R-Transformer through extensive experiments with data from a wide range of domains and the empirical results show that R-Transformer outperforms the state-of-the-art methods by a large margin in most of the tasks. We have made the code publicly available at url{https://github.com/DSE-MSU/R-transformer}.
Motivated by the fact that most of the information relevant to the prediction of target tokens is drawn from the source sentence $S=s_1, ldots, s_S$, we propose truncating the target-side window used for computing self-attention by making an $N$-gram assumption. Experiments on WMT EnDe and EnFr data sets show that the $N$-gram masked self-attention model loses very little in BLEU score for $N$ values in the range $4, ldots, 8$, depending on the task.
Transformers have become one of the most important architectural innovations in deep learning and have enabled many breakthroughs over the past few years. Here we propose a simple network architecture, gMLP, based on MLPs with gating, and show that i t can perform as well as Transformers in key language and vision applications. Our comparisons show that self-attention is not critical for Vision Transformers, as gMLP can achieve the same accuracy. For BERT, our model achieves parity with Transformers on pretraining perplexity and is better on some downstream NLP tasks. On finetuning tasks where gMLP performs worse, making the gMLP model substantially larger can close the gap with Transformers. In general, our experiments show that gMLP can scale as well as Transformers over increased data and compute.
This paper presents stacked attention networks (SANs) that learn to answer natural language questions from images. SANs use semantic representation of a question as query to search for the regions in an image that are related to the answer. We argue that image question answering (QA) often requires multiple steps of reasoning. Thus, we develop a multiple-layer SAN in which we query an image multiple times to infer the answer progressively. Experiments conducted on four image QA data sets demonstrate that the proposed SANs significantly outperform previous state-of-the-art approaches. The visualization of the attention layers illustrates the progress that the SAN locates the relevant visual clues that lead to the answer of the question layer-by-layer.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا