ترغب بنشر مسار تعليمي؟ اضغط هنا

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging

191   0   0.0 ( 0 )
 نشر من قبل Xiaotao Gu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Identifying and understanding quality phrases from context is a fundamental task in text mining. The most challenging part of this task arguably lies in uncommon, emerging, and domain-specific phrases. The infrequent nature of these phrases significantly hurts the performance of phrase mining methods that rely on sufficient phrase occurrences in the input corpus. Context-aware tagging models, though not restricted by frequency, heavily rely on domain experts for either massive sentence-level gold labels or handcrafted gazetteers. In this work, we propose UCPhrase, a novel unsupervised context-aware quality phrase tagger. Specifically, we induce high-quality phrase spans as silver labels from consistently co-occurring word sequences within each document. Compared with typical context-agnostic distant supervision based on existing knowledge bases (KBs), our silver labels root deeply in the input domain and context, thus having unique advantages in preserving contextual completeness and capturing emerging, out-of-KB phrases. Training a conventional neural tagger based on silver labels usually faces the risk of overfitting phrase surface names. Alternatively, we observe that the contextualized attention maps generated from a transformer-based neural language model effectively reveal the connections between words in a surface-agnostic way. Therefore, we pair such attention maps with the silver labels to train a lightweight span prediction model, which can be applied to new input to recognize (unseen) quality phrases regardless of their surface names or frequency. Thorough experiments on various tasks and datasets, including corpus-level phrase ranking, document-level keyphrase extraction, and sentence-level phrase tagging, demonstrate the superiority of our design over state-of-the-art pre-trained, unsupervised, and distantly supervised methods.



قيم البحث

اقرأ أيضاً

The ambiguities introduced by the recombination of morphemes constructing several possible inflections for a word makes the prediction of syntactic traits in Morphologically Rich Languages (MRLs) a notoriously complicated task. We propose the Multi T ask Deep Morphological analyzer (MT-DMA), a character-level neural morphological analyzer based on multitask learning of word-level tag markers for Hindi and Urdu. MT-DMA predicts a set of six morphological tags for words of Indo-Aryan languages: Parts-of-speech (POS), Gender (G), Number (N), Person (P), Case (C), Tense-Aspect-Modality (TAM) marker as well as the Lemma (L) by jointly learning all these in one trainable framework. We show the effectiveness of training of such deep neural networks by the simultaneous optimization of multiple loss functions and sharing of initial parameters for context-aware morphological analysis. Exploiting character-level features in phonological space optimized for each tag using multi-objective genetic algorithm, our model establishes a new state-of-the-art accuracy score upon all seven of the tasks for both the languages. MT-DMA is publicly accessible: code, models and data are available at https://github.com/Saurav0074/morph_analyzer.
105 - Zhaocheng Zhu , Junfeng Hu 2017
Recently, doc2vec has achieved excellent results in different tasks. In this paper, we present a context aware variant of doc2vec. We introduce a novel weight estimating mechanism that generates weights for each word occurrence according to its contr ibution in the context, using deep neural networks. Our context aware model can achieve similar results compared to doc2vec initialized byWikipedia trained vectors, while being much more efficient and free from heavy external corpus. Analysis of context aware weights shows they are a kind of enhanced IDF weights that capture sub-topic level keywords in documents. They might result from deep neural networks that learn hidden representations with the least entropy.
389 - Yicheng Zou , Jun Lin , Lujun Zhao 2020
Automatic chat summarization can help people quickly grasp important information from numerous chat messages. Unlike conventional documents, chat logs usually have fragmented and evolving topics. In addition, these logs contain a quantity of elliptic al and interrogative sentences, which make the chat summarization highly context dependent. In this work, we propose a novel unsupervised framework called RankAE to perform chat summarization without employing manually labeled data. RankAE consists of a topic-oriented ranking strategy that selects topic utterances according to centrality and diversity simultaneously, as well as a denoising auto-encoder that is carefully designed to generate succinct but context-informative summaries based on the selected utterances. To evaluate the proposed method, we collect a large-scale dataset of chat logs from a customer service environment and build an annotated set only for model evaluation. Experimental results show that RankAE significantly outperforms other unsupervised methods and is able to generate high-quality summaries in terms of relevance and topic coverage.
In this paper, we define and study a new task called Context-Aware Semantic Expansion (CASE). Given a seed term in a sentential context, we aim to suggest other terms that well fit the context as the seed. CASE has many interesting applications such as query suggestion, computer-assisted writing, and word sense disambiguation, to name a few. Previous explorations, if any, only involve some similar tasks, and all require human annotations for evaluation. In this study, we demonstrate that annotations for this task can be harvested at scale from existing corpora, in a fully automatic manner. On a dataset of 1.8 million sentences thus derived, we propose a network architecture that encodes the context and seed term separately before suggesting alternative terms. The context encoder in this architecture can be easily extended by incorporating seed-aware attention. Our experiments demonstrate that competitive results are achieved with appropriate choices of context encoder and attention scoring function.
The development of neural networks and pretraining techniques has spawned many sentence-level tagging systems that achieved superior performance on typical benchmarks. However, a relatively less discussed topic is what if more context information is introduced into current top-scoring tagging systems. Although several existing works have attempted to shift tagging systems from sentence-level to document-level, there is still no consensus conclusion about when and why it works, which limits the applicability of the larger-context approach in tagging tasks. In this paper, instead of pursuing a state-of-the-art tagging system by architectural exploration, we focus on investigating when and why the larger-context training, as a general strategy, can work. To this end, we conduct a thorough comparative study on four proposed aggregators for context information collecting and present an attribute-aided evaluation method to interpret the improvement brought by larger-context training. Experimentally, we set up a testbed based on four tagging tasks and thirteen datasets. Hopefully, our preliminary observations can deepen the understanding of larger-context training and enlighten more follow-up works on the use of contextual information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا