ﻻ يوجد ملخص باللغة العربية
In this paper, we first provide a brief review of the effective dynamics of two recently well-studied models of modified loop quantum cosmologies (mLQCs), which arise from different regularizations of the Hamiltonian constraint and show the robustness of a generic resolution of the big bang singularity, replaced by a quantum bounce due to non-perturbative Planck scale effects. As in loop quantum cosmology (LQC), in these modified models the slow-roll inflation happens generically. We consider the cosmological perturbations following the dressed and hybrid approaches and clarify some subtle issues regarding the ambiguity of the extension of the effective potential of the scalar perturbations across the quantum bounce, and the choice of initial conditions. Both of the modified regularizations yield primordial power spectra that are consistent with current observations for the Starobinsky potential within the framework of either the dressed or the hybrid approach. But differences in primordial power spectra are identified among the mLQCs and LQC. In addition, for mLQC-I, striking differences arise between the dressed and hybrid approaches in the infrared and oscillatory regimes. While the differences between the two modified models can be attributed to differences in the Planck scale physics, the permissible choices of the initial conditions and the differences between the two perturbation approaches have been reported for the first time. All these differences, due to either the different regularizations or the different perturbation approaches in principle can be observed in terms of non-Gaussianities.
When Brans-Dicke Theory is formulated in terms of the Jordan scalar field phi, dark energy is related to the mass of this field. We show that if phi is taken to be a complex scalar field then an exact solution of the vacuum equations shows that Fried
The origin of accelerating expansion of the Universe is one the biggest conundrum of fundamental physics. In this paper we review vacuum energy issues as the origin of accelerating expansion - generally called dark energy - and give an overview of al
We discuss the most general field equations for cosmological spacetimes for theories of gravity based on non-linear extensions of the non-metricity scalar and the torsion scalar. Our approach is based on a systematic symmetry-reduction of the metric-
We study the structure of compact objects that contain non-self annihilating, self-interacting dark matter admixed with ordinary matter made of neutron star and white dwarf materials. We extend the previous work Phys. Rev. D 92 123002 (2015) on these
We investigate the qualitative evolution of (D+1)-dimensional cosmological models in f(R) gravity for the general case of the function f(R). The analysis is specified for various examples, including the (D+1)-dimensional generalization of the Starobi