ﻻ يوجد ملخص باللغة العربية
Long linear carbon-chains have been attracting intense interest arising from the remarkable properties predicted and their potential applications in future nanotechnology. Here we comprehensively interrogate the excitonic transitions and the associated relaxation dynamics of nanotube confined long linear carbon-chains by using steady state and time-resolved Raman spectroscopies. The exciton relaxation dynamics on the confined carbon-chains occurs on a hundreds of picoseconds timescale, in strong contrast to the host dynamics that occurs on a few picosecond timescale. A prominent time-resolved Raman response is observed over a broad energy range extending from 1.2 to 2.8 eV, which includes the strong Raman resonance region around 2.2 eV. Evidence for a strong coupling between the chain and the nanotube host is found from the dynamics at high excitation energies which provides a clear evidence for an efficient energy transfer from the host carbon nanotube to the chain. Our experimental study presents the first unique characterization of the long linear carbon-chain exciton dynamics, providing indispensable knowledge for the understanding of the interactions between different carbon allotropes.
Three typical one-dimensional (1D)/quasi-1D nanocarbons, linear carbon chains, carbon nanotubes, and graphene nanoribbons have been proven to grow inside single-wall carbon nanotubes. This gives rise to three types of hybrid materials whose behaviour
Ultra long linear carbon chains of more than 6000 carbon atoms have recently been synthesized within double-walled carbon nanotubes, and they show a promising new route to one--atom--wide semiconductors with a direct band gap. Theoretical studies pre
The temperature effect on the Raman scattering efficiency is investigated in $varepsilon$-GaSe and $gamma$-InSe crystals. We found that varying the temperature over a broad range from 5 K to 350 K permits to achieve both the resonant conditions and t
We study the quasiparticle excitation and quench dynamics of the one-dimensional transverse-field Ising model with power-law ($1/r^{alpha}$) interactions. We find that long-range interactions give rise to a confining potential, which couples pairs of
Linear carbon chains (LCCs) have been shown to grow inside double-walled carbon nanotubes (DWCNTs) but isolating them from this hosting material represents one of the most challenging tasks towards applications. Herein we report the extraction and se