Simulating Globular Clusters in Dark Matter Sub-Halos


الملخص بالإنكليزية

A cosmological zoom-in simulation which develops into a Milky Way-like halo is started at redshift 7. The initial dark matter distribution is seeded with dense star clusters, median mass $5times 10^5 M_sun$, placed in the largest sub-halos present, which have a median peak circular velocity of 25 kms. Three simulations are initialized using the same dark matter distribution, with the star clusters started on approximately circular orbits having initial median radii 6.8 kpc, 0.14 kpc, and, at the exact center of the sub-halos. The simulations are evolved to the current epoch at which time the median galactic orbital radii of the three sets of clusters are 30, 5 and 16 kpc, with the clusters losing about 2, 50 and 15% of their mass, respectively. Clusters started at small orbital radii have so much tidal forcing that they are often not in equilibrium. Clusters started at larger sub-halo radii have a velocity dispersion that declines smoothly to $simeq$20% of the central value at $simeq$20 half mass radii. The clusters started at the sub-halo centers can show a rise in velocity dispersion beyond 3-5 half mass radii. That is, the clusters formed without local dark matter always have stellar mass dominated kinematics at all radii, whereas about 25% of the clusters started at sub-halo centers have remnant local dark matter.

تحميل البحث