ﻻ يوجد ملخص باللغة العربية
Borexino is a 280-ton liquid scintillator detector located at the Laboratori Nazionali del Gran Sasso in Italy. Since the start of its data taking in May 2007, it has provided several measurements of low-energy neutrinos from various sources. At the base of its success, lie unprecedented levels of radio-purity and extensive thermal stabilisation, both resulting from a years-long effort of the collaboration. Solar neutrinos, emitted in the hydrogen-to-helium fusion in the solar core, are important for the understanding of our star, as well as neutrino properties. Borexino is the only experiment that has performed a complete spectroscopy of the emph{pp} chain solar neutrinos (with the exception of the emph{hep} neutrinos contributing to the total flux at $10^{-5}$ level), through the detection of emph{pp}, $^7$Be, emph{pep}, and $^8$B solar neutrinos and has experimentally confirmed the existence of the CNO fusion cycle in the Sun. Borexino has also detected geoneutrinos, antineutrinos from the decays of long-lived radioactive elements inside the Earth, that can be exploited as a new and unique tool to study our planet. This paper reviews the most recent Borexino results on solar and geoneutrinos, from highlighting the key elements of the analyses up to the discussion and interpretation of the results for neutrino, solar, and geophysics.
The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos re
Borexino collaboration reported about first measurement of solar CNO-$ u$ interaction rate in Borexino detector. This result is consistent with Hydridic Earth model prediction about the contribution of $^{40}$K geo-antineutrino interactions in single
Neutrinos emitted in the carbon, nitrogen, oxygen (CNO) fusion cycle in the Sun are a sub-dominant, yet crucial component of solar neutrinos whose flux has not been measured yet. The Borexino experiment at the Laboratori Nazionali del Gran Sasso (Ita
We present a measurement of the geo--neutrino signal obtained from 1353 days of data with the Borexino detector at Laboratori Nazionali del Gran Sasso in Italy. With a fiducial exposure of (3.69 $pm$ 0.16) $times$ $10^{31}$ proton $times$ year after
We consider the effects of Galactic substructure on energetic neutrinos from annihilation of weakly-interacting massive particles (WIMPs) that have been captured by the Sun and Earth. Substructure gives rise to a time-varying capture rate and thus to