ﻻ يوجد ملخص باللغة العربية
Recent millimeter and infrared observations have shown that gap and ring-like structures are common in both dust thermal emission and scattered-light of protoplanetary disks. We investigate the impact of the so-called Thermal Wave Instability (TWI) on the millimeter and infrared scattered-light images of disks. We perform 1+1D simulations of the TWI and confirm that the TWI operates when the disk is optically thick enough for stellar light, i.e., small-grain-to-gas mass ratio of $gtrsim0.0001$. The mid-plane temperature varies as the waves propagate and hence gap and ring structures can be seen in both millimeter and infrared emission. The millimeter substructures can be observed even if the disk is fully optically thick since it is induced by the temperature variation, while density-induced substructures would disappear in the optically thick regime. The fractional separation between TWI-induced ring and gap is $Delta r/r sim$ 0.2-0.4 at $sim$ 10-50 au, which is comparable to those found by ALMA. Due to the temperature variation, snow lines of volatile species move radially and multiple snow lines are observed even for a single species. The wave propagation velocity is as fast as $sim$ 0.6 ${rm au~yr^{-1}}$, which can be potentially detected with a multi-epoch observation with a time separation of a few years.
We find that, under certain conditions, protoplanetary disks may spontaneously generate multiple, concentric gas rings without an embedded planet through an eccentric cooling instability. Using both linear theory and non-linear hydrodynamics simulati
Protoplanetary disks often appear as multiple concentric rings in dust continuum emission maps and scattered light images. These features are often associated with possible young planets in these disks. Many non-planetary explanations have also been
We study the origin of tail-like structures recently detected around the disk of SU Aurigae and several FU~Orionis-type stars. Dynamic protostellar disks featuring ejections of gaseous clumps and quiescent protoplanetary disks experiencing a close en
We study the structure of passively heated disks around T Tauri and Herbig Ae stars, and present a vectorized Monte Carlo dust radiative transfer model of protoplanetary disks. The vectorization provides a speed up factor of 100 when compared to a sc
Tidal interactions between the embedded planets and their surrounding protoplanetary disks are often postulated to produce the observed complex dust substructures, including rings, gaps, and asymmetries. In this Letter, we explore the consequences of