ﻻ يوجد ملخص باللغة العربية
As a simple technique to accelerate inference of large-scale pre-trained models, early exiting has gained much attention in the NLP community. It allows samples to exit early at internal classifiers without passing through the entire model. Most existing work usually trains the internal classifiers independently and employs an exiting strategy to decide whether or not to exit based on the confidence of the current internal classifier. However, none of these works takes full advantage of the fact that the internal classifiers are trained to solve the same task therefore can be used to construct an ensemble. In this paper, we show that a novel objective function for the training of the ensemble internal classifiers can be naturally induced from the perspective of ensemble learning and information theory. The proposed training objective consists of two terms: one for accuracy and the other for the diversity of the internal classifiers. In contrast, the objective used in prior work is exactly the accuracy term of our training objective therefore only optimizes the accuracy but not diversity. Further, we propose a simple voting-based strategy that considers predictions of all the past internal classifiers to infer the correct label and decide whether to exit. Experimental results on various NLP tasks show that our proposed objective function and voting-based strategy can achieve better accuracy-speed trade-offs.
This paper describes our approach for the triple scoring task at the WSDM Cup 2017. The task required participants to assign a relevance score for each pair of entities and their types in a knowledge base in order to enhance the ranking results in en
Mobile devices such as smartphones and autonomous vehicles increasingly rely on deep neural networks (DNNs) to execute complex inference tasks such as image classification and speech recognition, among others. However, continuously executing the enti
Recent advances in large-scale language representation models such as BERT have improved the state-of-the-art performances in many NLP tasks. Meanwhile, character-level Chinese NLP models, including BERT for Chinese, have also demonstrated that they
With rising concern around abusive and hateful behavior on social media platforms, we present an ensemble learning method to identify and analyze the linguistic properties of such content. Our stacked ensemble comprises of three machine learning mode
The dynamic ensemble selection of classifiers is an effective approach for processing label-imbalanced data classifications. However, such a technique is prone to overfitting, owing to the lack of regularization methods and the dependence of the afor