ترغب بنشر مسار تعليمي؟ اضغط هنا

Projected mushroom-type phase-change memory

73   0   0.0 ( 0 )
 نشر من قبل Ghazi Sarwat Syed
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phase-change memory devices have found applications in in-memory computing where the physical attributes of these devices are exploited to compute in place without the need to shuttle data between memory and processing units. However, non-idealities such as temporal variations in the electrical resistance have a detrimental impact on the achievable computational precision. To address this, a promising approach is projecting the phase configuration of phase change material onto some stable element within the device. Here we investigate the projection mechanism in a prominent phase-change memory device architecture, namely mushroom-type phase-change memory. Using nanoscale projected Ge2Sb2Te5 devices we study the key attributes of state-dependent resistance, drift coefficients, and phase configurations, and using them reveal how these devices fundamentally work.



قيم البحث

اقرأ أيضاً

Phase change memory (PCM) is an emerging data storage technology, however its programming is thermal in nature and typically not energy-efficient. Here we reduce the switching power of PCM through the combined approaches of filamentary contacts and t hermal confinement. The filamentary contact is formed through an oxidized TiN layer on the bottom electrode, and thermal confinement is achieved using a monolayer semiconductor interface, three-atom thick MoS2. The former reduces the switching volume of the phase change material and yields a 70% reduction in reset current versus typical 150 nm diameter mushroom cells. The enhanced thermal confinement achieved with the ultra-thin (~6 {AA}) MoS2 yields an additional 30% reduction in switching current and power. We also use detailed simulations to show that further tailoring the electrical and thermal interfaces of such PCM cells toward their fundamental limits could lead up to a six-fold benefit in power efficiency.
155 - Jake Scoggin , Helena Silva , 2019
We model electrical conductivity in metastable amorphous $Ge_{2}Sb_{2}Te_{5}$ using independent contributions from temperature and electric field to simulate phase change memory devices and Ovonic threshold switches. 3D, 2D-rotational, and 2D finite element simulations of pillar cells capture threshold switching and show filamentary conduction in the on-state. The model can be tuned to capture switching fields from ~5 to 40 MV/m at room temperature using the temperature dependent electrical conductivity measured for metastable amorphous GST; lower and higher fields are obtainable using different temperature dependent electrical conductivities. We use a 2D fixed out-of-plane-depth simulation to simulate an Ovonic threshold switch in series with a $Ge_{2}Sb_{2}Te_{5}$ phase change memory cell to emulate a crossbar memory element. The simulation reproduces the pre-switching current and voltage characteristics found experimentally for the switch + memory cell, isolated switch, and isolated memory cell.
130 - Yifei Zhang 2018
Optical phase change materials (O-PCMs), a unique group of materials featuring drastic optical property contrast upon solid-state phase transition, have found widespread adoption in photonic switches and routers, reconfigurable meta-optics, reflectiv e display, and optical neuromorphic computers. Current phase change materials, such as Ge-Sb-Te (GST), exhibit large contrast of both refractive index (delta n) and optical loss (delta k), simultaneously. The coupling of both optical properties fundamentally limits the function and performance of many potential applications. In this article, we introduce a new class of O-PCMs, Ge-Sb-Se-Te (GSST) which breaks this traditional coupling, as demonstrated with an optical figure of merit improvement of more than two orders of magnitude. The first-principle computationally optimized alloy, Ge2Sb2Se4Te1, combines broadband low optical loss (1-18.5 micron), large optical contrast (delta n = 2.0), and significantly improved glass forming ability, enabling an entirely new field of infrared and thermal photonic devices. We further leverage the material to demonstrate nonvolatile integrated optical switches with record low loss and large contrast ratio, as well as an electrically addressed, microsecond switched pixel level spatial light modulator, thereby validating its promise as a platform material for scalable nonvolatile photonics.
Neuro-inspired computing architectures are one of the leading candidates to solve complex, large-scale associative learning problems. The two key building blocks for neuromorphic computing are the synapse and the neuron, which form the distributed co mputing and memory units. Solid state implementations of these units remain an active area of research. Specifically, voltage or current controlled oscillators are considered a minimal representation of neurons for hardware implementations. Such oscillators should demonstrate synchronization and coupling dynamics for demonstrating collective learning behavior, besides the desirable individual characteristics such as scaling, power, and performance. To this end, we propose the use of nanoscale, epitaxial heterostructures of phase change oxides and oxides with metallic conductivity as a fundamental unit of an ultralow power, tunable electrical oscillator capable of operating in the microwave regime. Our simulations show that optimized heterostructure design with low thermal boundary resistance can result in operation frequency of up to 3 GHz and power consumption as low as 15 fJ/cycle with rich coupling dynamics between the oscillators.
We observed resistance drift in 125 K - 300 K temperature range in melt quenched amorphous Ge2Sb2Te5 line-cells with length x width x thickness = ~500 nm x ~100 nm x ~ 50 nm. Drift coefficients measured using small voltage sweeps appear to decrease f rom 0.12 +/- 0.029 at 300 K to 0.075 +/- 0.006 at 125 K. The current-voltage characteristics of the amorphized cells measured in the 85 K - 300 K using high-voltage sweeps (0 to ~25 V) show a combination of a linear, low-field exponential and high-field exponential conduction mechanisms, all of which are strong functions of temperature. The very first high-voltage sweep after amorphization (with electric fields up to ~70% of the breakdown field) shows clear hysteresis in the current-voltage characteristics due to accelerated drift, while the consecutive sweeps show stable characteristics. Stabilization was achieved with 50 nA compliance current (current densities ~104 A/cm^2), preventing appreciable self-heating in the cells. The observed acceleration and stoppage of the resistance drift with the application of high electric fields is attributed to changes in the electrostatic potential profile within amorphous Ge2Sb2Te5 due to trapped charges, reducing tunneling current. Stable current-voltage characteristics are used to extract carrier activation energies for the conduction mechanisms in 85 K - 300 K temperature range. The carrier activation energy associated with linear current-voltage response is extracted to be 331 +/- 5 meV in 200 - 300 K range, while carrier activation energies of 233 +/- 2 meV and 109 +/- 5 meV are extracted in 85 K to 300 K range for the mechanisms that give exponential current-voltage responses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا