ﻻ يوجد ملخص باللغة العربية
As GAN-based video and image manipulation technologies become more sophisticated and easily accessible, there is an urgent need for effective deepfake detection technologies. Moreover, various deepfake generation techniques have emerged over the past few years. While many deepfake detection methods have been proposed, their performance suffers from new types of deepfake methods on which they are not sufficiently trained. To detect new types of deepfakes, the model should learn from additional data without losing its prior knowledge about deepfakes (catastrophic forgetting), especially when new deepfakes are significantly different. In this work, we employ the Representation Learning (ReL) and Knowledge Distillation (KD) paradigms to introduce a transfer learning-based Feature Representation Transfer Adaptation Learning (FReTAL) method. We use FReTAL to perform domain adaptation tasks on new deepfake datasets while minimizing catastrophic forgetting. Our student model can quickly adapt to new types of deepfake by distilling knowledge from a pre-trained teacher model and applying transfer learning without using source domain data during domain adaptation. Through experiments on FaceForensics++ datasets, we demonstrate that FReTAL outperforms all baselines on the domain adaptation task with up to 86.97% accuracy on low-quality deepfakes.
Over the last few decades, artificial intelligence research has made tremendous strides, but it still heavily relies on fixed datasets in stationary environments. Continual learning is a growing field of research that examines how AI systems can lear
Knowledge Distillation refers to a class of methods that transfers the knowledge from a teacher network to a student network. In this paper, we propose Sparse Representation Matching (SRM), a method to transfer intermediate knowledge obtained from on
Despite the recent works on knowledge distillation (KD) have achieved a further improvement through elaborately modeling the decision boundary as the posterior knowledge, their performance is still dependent on the hypothesis that the target network
We propose a new method to detect deepfake images using the cue of the source feature inconsistency within the forged images. It is based on the hypothesis that images distinct source features can be preserved and extracted after going through state-
The existing solutions for object detection distillation rely on the availability of both a teacher model and ground-truth labels. We propose a new perspective to relax this constraint. In our framework, a student is first trained with pseudo labels