ﻻ يوجد ملخص باللغة العربية
MHD-based global space weather models have mostly been developed and maintained at academic institutions. While the free spirit approach of academia enables the rapid emergence and testing of new ideas and methods, the lack of long-term stability and support makes this arrangement very challenging. This paper describes a successful example of a university-based group, the Center of Space Environment Modeling (CSEM) at the University of Michigan, that developed and maintained the Space Weather Modeling Framework (SWMF) and its core element, the BATS-R-US extended MHD code. It took a quarter of a century to develop this capability and reach its present level of maturity that makes it suitable for research use by the space physics community through the Community Coordinated Modeling Center (CCMC) as well as operational use by the NOAA Space Weather Prediction Center (SWPC).
In the United States, scientific research in space weather is funded by several Government Agencies including the National Science Foundation (NSF) and the National Aeronautics and Space Agency (NASA). For commercial purposes, space weather forecast
The Carrington storm (September 1/2, 1859) is one of the largest magnetic storms ever observed and it has caused global auroral displays in low-latitude areas, together with a series of multiple magnetic storms during August 28 and September 4, 1859.
Using information on geomagnetic activity, sunspot numbers and cosmogenic isotopes, supported by historic eclipse images and in conjunction with models, it has been possible to reconstruct annual means of solar wind speed and number density and helio
Muon detectors and neutron monitors were recently installed at Syowa Station, in the Antarctic, to observe different types of secondary particles resulting from cosmic ray interactions simultaneously from the same location. Continuing observations wi
The nonlinear evolution of collisionless plasmas is typically a multi-scale process where the energy is injected at large, fluid scales and dissipated at small, kinetic scales. Accurately modelling the global evolution requires to take into account t