ترغب بنشر مسار تعليمي؟ اضغط هنا

Route to High-Performance Micro-solid Oxide Fuel Cells on Metallic Substrates

108   0   0.0 ( 0 )
 نشر من قبل Albert Taranc\\'on
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Micro-solid oxide fuel cells based on thin films have strong potential for use in portable power devices. However, devices based on silicon substrates typically involve thin-film metallic electrodes which are unstable at high temperatures. Devices based on bulk metal substrates overcome these limitations, though performance is hindered by the challenge of growing state-of-the-art epitaxial materials on metals. Here, we demonstrate for the first time the growth of epitaxial cathode materials on metal substrates (stainless steel) commercially supplied with epitaxial electrolyte layers (1.5 {um (Y2O3)0.15(ZrO2)0.85 (YSZ) + 50 nm CeO2). We create epitaxial mesoporous cathodes of (La0.60Sr0.40)0.95Co0.20Fe0.80O3 (LSCF) on the substrate by growing LSCF/MgO vertically aligned nanocomposite films by pulsed laser deposition, followed by selectively etching out the MgO. To enable valid comparison with the literature, the cathodes are also grown on single-crystal substrates, confirming state-of-the-art performance with an area specific resistance of 100ohmegacm2 at 500dC and activation energy down to 0.97 eV. The work marks an important step toward the commercialization of high-performance micro-solid oxide fuel cells for portable power applications.



قيم البحث

اقرأ أيضاً

A simple method has been used to synthesize nanostructured La0.5Ba0.5CoO3 (LBCO) powders, by confining chemical precursors into the pores of polycarbonate filters. The proposed method allows us to obtain powders formed by crystallites of different si zes, it is scalable and does not involve the use of sophisticated deposition techniques. The area specific polarization resistance of symmetrical cells was studied to analyze the electrochemical behavior of the LBCO nanostructures as cathodes for Solid-Oxide Fuel Cells. We show that the performance is improved by reducing the size of the crystallites, obtaining area specific resistance values of 0.2 Wcm2 at 700C, comparable with newly developed cathodes using novel deposition techniques.
Characterizing electrochemical energy conversion devices during operation is an important strategy for correlating device performance with the properties of cell materials under real operating conditions. While operando characterization has been used extensively for low temperature electrochemical cells, these techniques remain challenging for solid oxide electrochemical cells due to the high temperatures and reactive gas atmospheres these cells require. Operando X-ray diffraction measurements of solid oxide electrochemical cells could detect changes in the crystal structure of the cell materials, which can be useful for understanding degradation process that limit device lifetimes, but the experimental capability to perform operando X-ray diffraction on the fuel electrodes of these cells has not been demonstrated. Here we present the first experimental apparatus capable of performing X-ray diffraction measurements on the fuel electrodes of high temperature solid oxide electrochemical cells during operation under reducing gas atmospheres. We present data from an example experiment with a model solid oxide cell to demonstrate that this apparatus can collect X-ray diffraction spectra during electrochemical cell operation at high temperatures in humidified H2 gas. Measurements performed using this apparatus can reveal new insights about solid oxide fuel cell and solid oxide electrolyzer cell degradation mechanisms to enable the design of durable, high performance devices.
Additive manufacturing represents a revolution due to its unique capabilities for freeform fabrication of near net shapes with strong reduction of waste material and capital cost. These unfair advantages are especially relevant for expensive and ener gy-demanding manufacturing processes of advanced ceramics such as Yttria-stabilized Zirconia, the state-of-the-art electrolyte in Solid Oxide Fuel Cell applications. In this study, self-supported electrolytes of yttria-stabilized zirconia have been printed by using a stereolithography three-dimensional printer. Printed electrolytes and complete cells fabricated with cathode and anode layers of lanthanum strontium manganite- and nickel oxide-yttria-stabilized zirconia composites, respectively, were electrochemical characterized showing full functionality. In addition, more complex configurations of the electrolyte have been printed yielding an increase of the performance entirely based on geometrical aspects. Complementary, a numerical model has been developed and validated as predictive tool for designing more advanced configurations that will enable highly performing and fully customized devices in the next future
Here we report the development of high-efficiency microscale GaAs laser power converters, and their successful transfer printing onto silicon substrates, presenting a unique, high power, low-cost and integrated power supply solution for implantable e lectronics, autonomous systems and internet of things applications. We present 300 {mu}m diameter single-junction GaAs laser power converters and successfully demonstrate the transfer printing of these devices to silicon using a PDMS stamp, achieving optical power conversion efficiencies of 48% and 49% under 35 and 71 W/cm2 808 nm laser illumination respectively. The transferred devices are coated with ITO to increase current spreading and are shown to be capable of handling very high short-circuit current densities up to 70 A/cm2 under 141 W/cm2 illumination intensity (~1400 Suns), while their open circuit voltage reaches 1235 mV, exceeding the values of pre-transfer devices indicating the presence of photon-recycling. These optical power sources could deliver Watts of power to sensors and systems in locations where wired power is not an option, while using a massively parallel, scalable, and low-cost fabrication method for the integration of dissimilar materials and devices.
In this work we outline the mechanisms contributing to the oxygen reduction reaction in nanostructured cathodes of La0.8Sr0.2MnO3 (LSM) for Solid Oxide Fuel Cells (SOFC). These cathodes, developed from LSM nanostructured tubes, can be used at lower t emperatures compared to microstructured ones, and this is a crucial fact to avoid the degradation of the fuel cell components. This reduction of the operating temperatures stems mainly from two factors: i) the appearance of significant oxide ion diffusion through the cathode material in which the nanostructure plays a key role and ii) an optimized gas phase diffusion of oxygen through the porous structure of the cathode, which becomes negligible. A detailed analysis of our Electrochemical Impedance Spectroscopy supported by first principles calculations point towards an improved overall cathodic performance driven by a fast transport of oxide ions through the cathode surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا