ﻻ يوجد ملخص باللغة العربية
Leaning upon the specific Fock symmetry of the Coulomb interaction potential in the four-dimensional momentum space we perform the analytical solution of the Lippman-Schwinger equation for the Coulomb transition matrix in the case of negative energy at fraction values of the interaction parameter. Analytical expressions for the three dimensional and partial Coulomb transition matrix with simplest factional values of the interaction parameter are obtained.
With the use of the stereographic projection of momentum space into the four-dimensional sphere of unit radius. the possibility of the analytical solution of the three-dimensional two-body Lippmann-Schwinger equation with the Coulomb interaction at n
We analytically evaluate the generating integral $K_{nl}(beta,beta) = int_{0}^{infty}int_{0}^{infty} e^{-beta r - beta r}G_{nl} r^{q} r^{q} dr dr$ and integral moments $J_{nl}(beta, r) = int_{0}^{infty} dr G_{nl}(r,r) r^{q} e^{-beta r}$ for the reduc
We review the methods to combine several measurements, in the form of parameter values or $p$-values.
We explore the quantum Coulomb problem for two-body bound states, in $D=3$ and $D=3-2epsilon$ dimensions, in detail, and give an extensive list of expectation values that arise in the evaluation of QED corrections to bound state energies. We describe
The superconductor-insulator transition (SIT) in regular arrays of Josephson junctions is studied at low temperatures. Near the transition a Ginzburg-Landau type action containing the imaginary time is derived. The new feature of this action is that