ترغب بنشر مسار تعليمي؟ اضغط هنا

Beam Focusing for Near-Field Multi-User MIMO Communications

72   0   0.0 ( 0 )
 نشر من قبل Haiyang Zhang
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Large antenna arrays and high-frequency bands are two key features of future wireless communication systems. The combination of large-scale antennas with high transmission frequencies often results in the communicating devices operating in the near-field (Fresnel) region. In this paper, we study the potential of beam focusing, feasible in near-field operation, in facilitating high-rate multi-user downlink multiple-input multiple-output (MIMO) systems. As the ability to achieve beam focusing is dictated by the transmit antenna, we study near-field signaling considering different antenna structures, including fully-digital architectures, hybrid phase shifter-based precoders, and the emerging dynamic metasurface antenna (DMA) architecture for massive MIMO arrays. We first provide a mathematical model to characterize near-field wireless channels as well as the transmission pattern for the considered antenna architectures. Then, we formulate the beam focusing problem for the goal of maximizing the achievable sum-rate in multi-user networks. We propose efficient solutions based on the sum-rate maximization task for fully-digital, (phase shifters based-) hybrid and DMA architectures. Simulation results show the feasibility of the proposed beam focusing scheme for both single- and multi-user scenarios. In particular, the designed focused beams are such that users residing at the same angular direction can communicate reliably without interfering with each other, which is not achievable using conventional far-field beam steering.



قيم البحث

اقرأ أيضاً

Visible light communication (VLC) is an emerging technology that enables broadband data rates using the visible spectrum. In this paper, considering slow beam steering where VLC beam directions are assumed to be fixed during a transmission frame, we find the steering angles that simultaneously serve multiple users within the frame duration and maximize the data rates. This is achieved by solving a non-convex optimization problem using a grid-based search and majorization-minimization (MM) procedure. Subsequently, we consider multiple steerable beams with a larger number of users in the network and propose an algorithm to cluster users and serve each cluster with a separate beam. We optimize the transmit power of each beam to maximize the data rates. Finally, we propose a non-orthogonal multiple access (NOMA) scheme for the beam steering and user clustering scenario, to further increase the data rates of the users. The simulation results show that the proposed beam steering method can efficiently serve a high number of users, and with power optimization, a data rate gain up to ten times is possible. The simulation results for NOMA suggests an additional 10 Mbps sum rate gain for each NOMA user pair.
While mmWave bands provide a large bandwidth for mobile broadband services, they suffer from severe path loss and shadowing. Multiple-antenna techniques such as beamforming (BF) can be applied to compensate the signal attenuation. We consider a speci al case of hybrid BF called per-stream hybrid BF (PSHBF) which is easier to implement than the general hybrid BF because it circumvents the need for joint analog-digital beamformer optimization. Employing BF at the base station enables the transmission of multiple data streams to several users in the same resource block. In this paper, we provide an offline study of proportional fair multi-user scheduling in a mmWave system with PSHBF to understand the impact of various system parameters on the performance. We formulate multi-user scheduling as an optimization problem. To tackle the non-convexity, we provide a feasible solution and show through numerical examples that the performance of the provided solution is very close to an upper-bound. Using this framework, we provide extensive numerical investigations revealing several engineering insights.
77 - You Chen , Guyue Li , Chen Sun 2020
Physical-layer key generation (PKG) in multi-user massive MIMO networks faces great challenges due to the large length of pilots and the high dimension of channel matrix. To tackle these problems, we propose a novel massive MIMO key generation scheme with pilot reuse based on the beam domain channel model and derive close-form expression of secret key rate. Specifically, we present two algorithms, i.e., beam-domain based channel probing (BCP) algorithm and interference neutralization based multi-user beam allocation (IMBA) algorithm for the purpose of channel dimension reduction and multi-user pilot reuse, respectively. Numerical results verify that the proposed PKG scheme can achieve the secret key rate that approximates the perfect case, and significantly reduce the dimension of the channel estimation and pilot overhead.
137 - Rang Liu , Hongyu Li , Ming Li 2019
Intelligent reflecting surface (IRS) has emerged as a promising solution to enhance wireless information transmissions by adaptively controlling prorogation environment. Recently, the brand-new concept of utilizing IRS to implement a passive transmit ter attracts researchers attention since it potentially realizes low-complexity and hardware-efficient transmitters of multiple-input single/multiple-output (MISO/MIMO) systems. In this paper we investigate the problem of precoder design for a low-resolution IRS-based transmitter to implement multi-user MISO/MIMO wireless communications. Particularly, the IRS modulates information symbols by varying the phases of its reflecting elements and transmits them to $K$ single-antenna or multi-antenna users. We first aim to design the symbol-level precoder for IRS to realize the modulation and minimize the maximum symbol-error-rate (SER) of single-antenna receivers. In order to tackle this NP-hard problem, we first relax the low-resolution phase-shift constraint and solve this problem by Riemannian conjugate gradient (RCG) algorithm. Then, the low-resolution symbol-level precoding vector is obtained by direct quantization. Considering the large quantization error for 1-bit resolution case, the branch-and-bound method is utilized to solve the 1-bit resolution symbol-level precoding vector. For multi-antenna receivers, we propose to iteratively design the symbol-level precoder and combiner by decomposing the original large-scale optimization problem into several sub-problems. Simulation results validate the effectiveness of our proposed algorithms.
The near-field effect of short-range multiple-input multiple-output (MIMO) systems imposes many challenges on direction-of-arrival (DoA) estimation. Most conventional scenarios assume that the far-field planar wavefronts hold. In this paper, we inves tigate the DoA estimation problem in short-range MIMO communications, where the effect of near-field spherical wave is non-negligible. By converting it into a regression task, a novel DoA estimation framework based on complex-valued deep learning (CVDL) is proposed for the near-field region in short-range MIMO communication systems. Under the assumption of a spherical wave model, the array steering vector is determined by both the distance and the direction. However, solving this regression task containing a massive number of variables is challenging, since datasets need to capture numerous complicated feature representations. To overcome this, a virtual covariance matrix (VCM) based on received signals is constructed, and thus such features extracted from the VCM can deal with the complicated coupling relationship between the direction and the distance. Although the emergence of wireless big data driven by future communication networks promotes deep learning-based wireless signal processing, the learning algorithms of complex-valued signals are still ongoing. This paper proposes a one-dimensional (1-D) residual network that can directly tackle complex-valued features due to the inherent 1-D structure of signal subspace vectors. In addition, we put forth a cropped VCM based policy which can be applied to different antenna sizes. The proposed method is able to fully exploit the complex-valued information. Our simulation results demonstrate the superiority of the proposed CVDL approach over the baseline schemes in terms of the accuracy of DoA estimation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا