ترغب بنشر مسار تعليمي؟ اضغط هنا

Freeform nanostructuring of hexagonal boron nitride

83   0   0.0 ( 0 )
 نشر من قبل Nolan Lassaline
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hexagonal boron nitride (hBN)-long-known as a thermally stable ceramic-is now available as atomically smooth, single-crystalline flakes, revolutionizing its use in optoelectronics. For nanophotonics, these flakes offer strong nonlinearities, hyperbolic dispersion, and single-photon emission, providing unique properties for optical and quantum-optical applications. For nanoelectronics, their pristine surfaces, chemical stability, and wide bandgap have made them the key substrate, encapsulant, and gate dielectric for two-dimensional electronic devices. However, while exploring these advantages, researchers have been restricted to flat flakes or those patterned with basic slits and holes, severely limiting advanced architectures. If freely varying flake profiles were possible, the hBN structure would present a powerful design parameter to further manipulate the flow of photons, electrons, and excitons in next-generation devices. Here, we demonstrate freeform nanostructuring of hBN by combining thermal scanning-probe lithography and reactive-ion etching to shape flakes with surprising fidelity. We leverage sub-nanometer height control and high spatial resolution to produce previously unattainable flake structures for a broad range of optoelectronic applications. For photonics, we fabricate microelements and show the straightforward transfer and integration of such elements by placing a spherical hBN microlens between two planar mirrors to obtain a stable, high-quality optical microcavity. We then decrease the patterning length scale to introduce Fourier surfaces for electrons, creating sophisticated, high-resolution landscapes in hBN, offering new possibilities for strain and band-structure engineering. These capabilities can advance the discovery and exploitation of emerging phenomena in hyperbolic metamaterials, polaritonics, twistronics, quantum materials, and 2D optoelectronic devices.



قيم البحث

اقرأ أيضاً

Hexagonal boron nitride (hBN) has emerged as a promising material platform for nanophotonics and quantum sensing, hosting optically-active defects with exceptional properties such as high brightness and large spectral tuning. However, precise control over deterministic spatial positioning of emitters in hBN remained elusive for a long time, limiting their proper correlative characterization and applications in hybrid devices. Recently, focused ion beam (FIB) systems proved to be useful to engineer several types of spatially-defined emitters with various structural and photophysical properties. Here we systematically explore the physical processes leading to the creation of optically-active defects in hBN using FIB, and find that beam-substrate interaction plays a key role in the formation of defects. These findings are confirmed using transmission electron microscopy that reveals local mechanical deterioration of the hBN layers and local amorphization of ion beam irradiated hBN. Additionally, we show that upon exposure to water, amorphized hBN undergoes a structural and optical transition between two defect types with distinctive emission properties. Moreover, using super-resolution optical microscopy combined with atomic force microscopy, we pinpoint the exact location of emitters within the defect sites, confirming the role of defected edges as primary sources of fluorescent emission. This lays the foundation for FIB-assisted engineering of optically-active defects in hBN with high spatial and spectral control for applications ranging from integrated photonics, to quantum sensing to nanofluidics.
Hexagonal boron nitride (hBN) is an emerging layered material that plays a key role in a variety of two-dimensional devices, and has potential applications in nanophotonics and nanomechanics. Here, we demonstrate the first cavity optomechanical syste m incorporating hBN. Nanomechanical resonators consisting of hBN beams with predicted thickness between 8 nm and 51 nm were fabricated using electron beam induced etching and positioned in the optical nearfield of silicon microdisk cavities. A 160 fm/$sqrt{text{Hz}}$ sensitivity to the hBN nanobeam motion is demonstrated, allowing observation of thermally driven mechanical resonances with frequencies between 1 and 23 MHz, and mechanical quality factors reaching 1100 at room temperature in high vacuum. In addition, the role of air damping is studied via pressure dependent measurements. Our results constitute an important step towards realizing integrated optomechanical circuits employing hBN.
Two-photon absorption is an important non-linear process employed for high resolution bio-imaging and non-linear optics. In this work we realize two-photon excitation of a quantum emitter embedded in a two-dimensional material. We examine defects in hexagonal boron nitride and show that the emitters exhibit similar spectral and quantum properties under one-photon and two-photon excitation. Furthermore, our findings are important to deploy two-dimensional hexagonal boron nitride for quantum non-linear photonic applications.
Hexagonal boron nitride (h-BN), a prevalent insulating crystal for dielectric and encapsulation layers in two-dimensional (2D) nanoelectronics and a structural material in 2D nanoelectromechanical systems (NEMS), has also rapidly emerged as a promisi ng platform for quantum photonics with the recent discovery of optically active defect centers and associated spin states. Combined with measured emission characteristics, here we propose and numerically investigate the cavity quantum electrodynamics (cavity-QED) scheme incorporating these defect-enabled single photon emitters (SPEs) in h-BN microdisk resonators. The whispering-gallery nature of microdisks can support multiple families of cavity resonances with different radial and azimuthal mode indices simultaneously, overcoming the challenges in coinciding a single point defect with the maximum electric field of an optical mode both spatially and spectrally. The excellent characteristics of h-BN SPEs, including exceptional emission rate, considerably high Debye-Waller factor, and Fourier transform limited linewidth at room temperature, render strong coupling with the ratio of coupling to decay rates g/max({gamma},k{appa}) predicated as high as 500. This study not only provides insight into the emitter-cavity interaction, but also contributes toward realizing h-BN photonic components, such as low-threshold microcavity lasers and high-purity single photon sources, critical for linear optics quantum computing and quantum networking applications.
100 - Lianjie Xue , Song Liu , Yang Hang 2021
The non-linear response of dielectrics to intense, ultrashort electric fields has been a sustained topic of interest for decades with one of its most important applications being femtosecond laser micro/nano-machining. More recently, renewed interest s in strong field physics of solids were raised with the advent of mid-infrared femtosecond laser pulses, such as high-order harmonic generation, optical-field-induced currents, etc. All these processes are underpinned by photoionization (PI), namely the electron transfer from the valence to the conduction bands, on a time scale too short for phononic motion to be of relevance. Here, in hexagonal boron nitride, we reveal that the bandgap can be finely manipulated by femtosecond laser pulses as a function of field polarization direction with respect to the lattice, in addition to the fields intensity. It is the modification of bandgap that enables the ultrafast PI processes to take place in dielectrics. We further demonstrate the validity of the Keldysh theory in describing PI in dielectrics in the few TW/cm2 regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا