ﻻ يوجد ملخص باللغة العربية
The volume available on small satellites restricts the size of optical apertures to a few centimetres, limiting the Ground-Sampling Distance (GSD) in the visible to typically 3 m at 500 km. We present in this paper the latest development of a laboratory demonstrator of a segmented deployable telescope that will triple the achievable ground resolution and improve photometric capability of CubeSat imagers. Each mirror segment is folded for launch and unfolds in space. We demonstrate through laboratory validation very high deployment repeatability of the mirrors <{pm}5 {mu}m. To enable diffraction-limited imaging, segments are controlled in piston, tip, and tilt. This is achieved by an initial coarse alignment of the mirrors followed by a fine phasing step. Finally, we investigate the impact of the thermal environment on high-order wavefront error and the conceptual design of a deployable secondary fitting inside 1U.
In this paper we present HighRes: a laboratory demonstration of a 3U CubeSat with a deployable primary mirror that has the potential of achieving high-resolution imaging for Earth Observation. The system is based on a Cassegrain telescope with a segm
Variable curvature mirrors of large amplitude are designed by using finite element analysis. The specific case studied reaches at least a 800 {mu}m sag with an optical quality better than {lambda}/5 over a 120 mm clear aperture. We highlight the geometrical nonlinearity and the plasticity effect.
We investigate the aspherization of an active mirror for correcting third and fifth-order aberrations. We use a stainless steel AISI 420 mirror with a controlled pressure load, two series of 12-punctual radial positions of force application distribut
Application of cubesats in astronomical observations has been getting more and more mature in recent years. Here we report a concept study of a small Compton polarimeter to fly on a cubesat for observing polarization of soft gamma-rays from a black-h
HERMES (High Energy Rapid Modular Ensemble of Satellites) Technological and Scientific pathfinder is a space borne mission based on a LEO constellation of nano-satellites. The 3U CubeSat buses host new miniaturized detectors to probe the temporal emi