The Lindhard function represents the basic building block of many-body physics and accounts for charge response, plasmons, screening, Friedel oscillation, RKKY interaction etc. Here we study its non-Hermitian version in one dimension, where quantum effects are traditionally enhanced due to spatial confinement, and analyze its behavior in various limits of interest. Most importantly, we find that the static limit of the non-Hermitian Lindhard function has no divergence at twice the Fermi wavenumber and vanishes identically for all other wavenumbers at zero temperature. Consequently, no Friedel oscillations are induced by a non-Hermitian, imaginary impurity to lowest order in the impurity potential at zero temperature. Our findings are corroborated numerically on a tight-binding ring by switching on a weak real or imaginary potential. We identify conventional Friedel oscillations or heavily suppressed density response, respectively.