ﻻ يوجد ملخص باللغة العربية
We explore whether assumptions about dust grain shape affect resulting estimates of the composition and grain size distribution of the AU Microscopii (AU Mic) debris disk from scattered light data collected by Lomax et al. (2018). The near edge-on orientation of the AU Mic debris disk makes it ideal for studying the effect of the scattering phase function (SPF) on the measured flux ratios as a function of wavelength and projected distance. Previous efforts to model the AU Mic debris disk have invoked a variety of dust grain compositions and explored the effect of porosity, but did not undertake a systematic effort to explore a full range of size distributions and compositions to understand possible degeneracies in fitting the data. The degree to which modelling dust grains with more realistic shapes compounds these degeneracies has also not previously been explored. We find differences in the grain properties retrieved depending on the grain shape model used. We also present here our calculations of porous grains of size parameters x = 0.1 to 48 and complex refractive indices (m = n+ik) ranging from n = 1.1 to 2.43 and k = 0 to 1.0, covering multiple compositions at visible and near infrared wavelengths such as ice, silicates, amorphous carbon, and tholins.
We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband im
AU Microscopii (AU Mic) is the second closest pre main sequence star, at a distance of 9.79 parsecs and with an age of 22 million years. AU Mic possesses a relatively rare and spatially resolved3 edge-on debris disk extending from about 35 to 210 ast
Geochemical and astronomical evidence demonstrate that planet formation occurred in two spatially and temporally separated reservoirs. The origin of this dichotomy is unknown. We use numerical models to investigate how the evolution of the solar prot
We present the first scattered light detections of the HD 106906 debris disk using Gemini/GPI in the infrared and HST/ACS in the optical. HD 106906 is a 13 Myr old F5V star in the Sco-Cen association, with a previously detected planet-mass candidate
The most abundant components of primitive meteorites (chondrites) are millimeter-sized glassy spherical chondrules formed by transient melting events in the solar protoplanetary disk. Using Pb-Pb dates of 22 individual chondrules, we show that primar