ترغب بنشر مسار تعليمي؟ اضغط هنا

Ageing studies of Multi-Strip Multi-Gap Resistive Plate Counters based on low resistivity glass electrodes in high irradiation dose

84   0   0.0 ( 0 )
 نشر من قبل Mihai Petrovici
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Detailed tests and analysis of ageing effects of high irradiation dose on Multi-Strip Multi-Gap Resistive Plate Counters based on low resistivity glass electrodes were performed. MSMGRPC efficiency and cluster size before irradiation are measured and compared with their values after irradiation in a high irradiation dose accessed at a multi-purpose irradiation facility of IFIN-HH based on $^{60}$Co source. The composition and properties of the deposited layers on the glass electrodes, studied based on a multitude of analysis methods, i.e. SEM, XPS, foil-ERDA, RBS, AFM and THz-TDS, are presented.



قيم البحث

اقرأ أيضاً

261 - Ushasi Datta 2015
A prototype of Multi-strip Multi-gap Resistive Plate chamber (MMRPC) with active area 40 cm $times$ 20 cm has been developed at SINP, Kolkata. Detailed response of the developed detector was studied with the pulsed electron beam from ELBE at Helmholt z-Zentrum Dresden-Rossendorf. In this report the response of SINP developed MMRPC with different controlling parameters is described in details. The obtained time resolution ($sigma_t$) of the detector after slew correction was 91.5$ pm $3 ps. Position resolution measured along ($sigma_x$) and across ($sigma_y$) the strip was 2.8$pm$0.6 cm and 0.58 cm, respectively. The measured absolute efficiency of the detector for minimum ionizing particle like electron was 95.8$pm$1.3 $%$. Better timing resolution of the detector can be achieved by restricting the events to a single strip. The response of the detector was mainly in avalanche mode but a few percentage of streamer mode response was also observed. A comparison of the response of these two modes with trigger rate was studied
While in a triggered experiment the matching of the RPC transmission line impedance with the one of the front-end electronics is less critical, for a trigger-less data recording this becomes mandatory. As expected, impedance matching is not straightf orward when other requirements in terms of time and position resolutions, efficiency and granularity, have to be fulfilled in the same time. A method and the very first results obtained with a RPC prototype built based on it, presented in this paper, show that the impedance matching, independent of its granularity, can be achieved using an innovative architecture of the RPC.
116 - G. Aielli , B. Bilki , R. Ball 2012
We report on studies of fast triggering and high-precision tracking using Resistive Plate Chambers (RPCs). Two beam tests were carried out with the 180 GeV muon beam at CERN using RPCs with gas gaps of 1.00 or 1.15 mm and equipped with readout strips with 1.27 mm pitch. This is the first beam test of RPCs with fine-pitch readout strips that explores simultaneously precision tracking and triggering capabilities. RPC signals were acquired with precision timing and charge integrating readout electronics at both ends of the strips. The time resolution was measured to be better than 600 ps and the average spatial resolution was found to be 220 um using charge information and 287 um using timing information. The dual-ended readout allows the determination of the average and the difference of the signal arrival times. The average time was found to be independent of the incident particle position along the strip and is useful for triggering purposes. The time difference yielded a determination of the hit position with a precision of 7.5 mm along the strip. These results demonstrate the feasibility using RPCs for fast and high-resolution triggering and tracking.
The Multi-gap Resistive Plate Chamber (MRPC) is an advanced form of Resistive Plate Chamber (RPC) detector where the gas gap is divided into sub-gaps. MRPCs are known for their good time resolution and detection efficiency for charged particles. They have found suitable applications in several high energy physics experiments like ALICE in LHC, CERN, Geneva, Switzerland, and STAR in RHIC, BNL, USA. As they have very good time resolution and are of low cost, they can be a suitable replacement for very expensive scintillators used in Positron Emission Tomography Imaging. The MRPCs that are being used nowadays are developed with glass electrodes. We have made an attempt to develop a 6-gap MRPC using bakelite electrodes. The outer electrodes are of dimensions 15 cm $times$ 15 cm $times$ 0.3 cm and the inner electrodes are of dimension 14 cm $times$ 14 cm $times$ 0.05 cm. The glossy finished electrode surfaces have not been treated with any oil like linseed, silicone for smoothness. The performance of the detector has been studied measuring the efficiency, noise rate and time resolution with cosmic rays. This effort is towards the development of a prototype for Positron Emission Tomography with the Time-Of-Flight technique using MRPCs. Details of the development procedure and performance studies have been presented here.
340 - Y.J. Sun , C. Li , M. Shao 2008
A new kind of Multi-gap Resistive Plate Chamber (MRPC) has been built for the large-area Muon Telescope Detector (MTD) for the STAR experiment at RHIC. These long read-out strip MRPCs (LMRPCs) have an active area of 87.0 x 17.0 cm2 and ten 250 um-thi ck gas gaps arranged as a double stack. Each read-out strip is 2.5 cm wide and 90 cm long. The signals are read-out at both ends of each strip. Cosmic ray tests indicate a time resolution of ~70 ps and a detection efficiency of greater than 95%. Beam tests performed at T963 at Fermilab indicate a time resolution of 60-70 ps and a spatial resolution of ~1 cm along the strip direction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا