ﻻ يوجد ملخص باللغة العربية
We study vector-valued Littlewood-Paley-Stein theory for semigroups of regular contractions ${T_t}_{t>0}$ on $L_p(Omega)$ for a fixed $1<p<infty$. We prove that if a Banach space $X$ is of martingale cotype $q$, then there is a constant $C$ such that $$ left|left(int_0^inftybig|tfrac{partial}{partial t}P_t (f)big|_X^q,frac{dt}tright)^{frac1q}right|_{L_p(Omega)}le C, big|fbig|_{L_p(Omega; X)},, quadforall, fin L_p(Omega; X),$$ where ${P_t}_{t>0}$ is the Poisson semigroup subordinated to ${T_t}_{t>0}$. Let $mathsf{L}^P_{c, q, p}(X)$ be the least constant $C$, and let $mathsf{M}_{c, q}(X)$ be the martingale cotype $q$ constant of $X$. We show $$mathsf{L}^{P}_{c,q, p}(X)lesssim maxbig(p^{frac1{q}},, pbig) mathsf{M}_{c,q}(X).$$ Moreover, the order $maxbig(p^{frac1{q}},, pbig)$ is optimal as $pto1$ and $ptoinfty$. If $X$ is of martingale type $q$, the reverse inequality holds. If additionally ${T_t}_{t>0}$ is analytic on $L_p(Omega; X)$, the semigroup ${P_t}_{t>0}$ in these results can be replaced by ${T_t}_{t>0}$ itself. Our new approach is built on holomorphic functional calculus. Compared with all the previous, the new one is more powerful in several aspects: a) it permits us to go much further beyond the setting of symmetric submarkovian semigroups; b) it yields the optimal orders of growth on $p$ for most of the relevant constants; c) it gives new insights into the scalar case for which our orders of the best constants in the classical Littlewood-Paley-Stein inequalities for symmetric submarkovian semigroups are better than the previous by Stein. In particular, we resolve a problem of Naor and Young on the optimal order of the best constant in the above inequality when $X$ is of martingale cotype $q$ and ${P_t}_{t>0}$ is the classical Poisson and heat semigroups on $mathbb{R}^d$.
Let $S_{alpha}$ be the multilinear square function defined on the cone with aperture $alpha geq 1$. In this paper, we investigate several kinds of weighted norm inequalities for $S_{alpha}$. We first obtain a sharp weighted estimate in terms of apert
Let $G$ be a topological Abelian semigroup with unit, let $E$ be a Banach space, and let $C(G,E)$ denote the set of continuous functions $fcolon Gto E$. A function $fin C(G,E)$ is a generalized polynomial, if there is an $nge 0$ such that $Delta_{h_1
For suitable finite-dimensional smooth manifolds M (possibly with various kinds of boundary or corners), locally convex topological vector spaces F and non-negative integers k, we construct continuous linear operators S_n from the space of F-valued k
We study Fourier and Laplace transforms for Fourier hyperfunctions with values in a complex locally convex Hausdorff space. Since any hyperfunction with values in a wide class of locally convex Hausdorff spaces can be extended to a Fourier hyperfunct
This paper deals with the inequalities devoted to the comparison between the norm of a function on a compact hypergroup and the norm of its Fourier coefficients. We prove the classical Paley inequality in the setting of compact hypergroups which furt