ترغب بنشر مسار تعليمي؟ اضغط هنا

Holomorphic functional calculus and vector-valued Littlewood-Paley-Stein theory for semigroups

72   0   0.0 ( 0 )
 نشر من قبل Quanhua Xu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Quanhua Xu




اسأل ChatGPT حول البحث

We study vector-valued Littlewood-Paley-Stein theory for semigroups of regular contractions ${T_t}_{t>0}$ on $L_p(Omega)$ for a fixed $1<p<infty$. We prove that if a Banach space $X$ is of martingale cotype $q$, then there is a constant $C$ such that $$ left|left(int_0^inftybig|tfrac{partial}{partial t}P_t (f)big|_X^q,frac{dt}tright)^{frac1q}right|_{L_p(Omega)}le C, big|fbig|_{L_p(Omega; X)},, quadforall, fin L_p(Omega; X),$$ where ${P_t}_{t>0}$ is the Poisson semigroup subordinated to ${T_t}_{t>0}$. Let $mathsf{L}^P_{c, q, p}(X)$ be the least constant $C$, and let $mathsf{M}_{c, q}(X)$ be the martingale cotype $q$ constant of $X$. We show $$mathsf{L}^{P}_{c,q, p}(X)lesssim maxbig(p^{frac1{q}},, pbig) mathsf{M}_{c,q}(X).$$ Moreover, the order $maxbig(p^{frac1{q}},, pbig)$ is optimal as $pto1$ and $ptoinfty$. If $X$ is of martingale type $q$, the reverse inequality holds. If additionally ${T_t}_{t>0}$ is analytic on $L_p(Omega; X)$, the semigroup ${P_t}_{t>0}$ in these results can be replaced by ${T_t}_{t>0}$ itself. Our new approach is built on holomorphic functional calculus. Compared with all the previous, the new one is more powerful in several aspects: a) it permits us to go much further beyond the setting of symmetric submarkovian semigroups; b) it yields the optimal orders of growth on $p$ for most of the relevant constants; c) it gives new insights into the scalar case for which our orders of the best constants in the classical Littlewood-Paley-Stein inequalities for symmetric submarkovian semigroups are better than the previous by Stein. In particular, we resolve a problem of Naor and Young on the optimal order of the best constant in the above inequality when $X$ is of martingale cotype $q$ and ${P_t}_{t>0}$ is the classical Poisson and heat semigroups on $mathbb{R}^d$.



قيم البحث

اقرأ أيضاً

Let $S_{alpha}$ be the multilinear square function defined on the cone with aperture $alpha geq 1$. In this paper, we investigate several kinds of weighted norm inequalities for $S_{alpha}$. We first obtain a sharp weighted estimate in terms of apert ure $alpha$ and $vec{w} in A_{vec{p}}$. By means of some pointwise estimates, we also establish two-weight inequalities including bump and entropy bump estimates, and Fefferman-Stein inequalities with arbitrary weights. Beyond that, we consider the mixed weak type estimates corresponding Sawyers conjecture, for which a Coifman-Fefferman inequality with the precise $A_{infty}$ norm is proved. Finally, we present the local decay estimates using the extrapolation techniques and dyadic analysis respectively. All the conclusions aforementioned hold for the Littlewood-Paley $g^*_{lambda}$ function. Some results are new even in the linear case.
174 - Miklos Laczkovich 2020
Let $G$ be a topological Abelian semigroup with unit, let $E$ be a Banach space, and let $C(G,E)$ denote the set of continuous functions $fcolon Gto E$. A function $fin C(G,E)$ is a generalized polynomial, if there is an $nge 0$ such that $Delta_{h_1 } ldots Delta_{h_{n+1}} f=0$ for every $h_1 ,ldots , h_{n+1} in G$, where $Delta_h$ is the difference operator. We say that $fin C(G,E)$ is a polynomial, if it is a generalized polynomial, and the linear span of its translates is of finite dimension; $f$ is a w-polynomial, if $ucirc f$ is a polynomial for every $uin E^*$, and $f$ is a local polynomial, if it is a polynomial on every finitely generated subsemigroup. We show that each of the classes of polynomials, w-polynomials, generalized polynomials, local polynomials is contained in the next class. If $G$ is an Abelian group and has a dense subgroup with finite torsion free rank, then these classes coincide. We introduce the classes of exponential polynomials and w-expo-nential polynomials as well, establish their representations and connection with polynomials and w-polynomials. We also investigate spectral synthesis and analysis in the class $C(G,E)$. It is known that if $G$ is a compact Abelian group and $E$ is a Banach space, then spectral synthesis holds in $C(G,E)$. On the other hand, we show that if $G$ is an infinite and discrete Abelian group and $E$ is a Banach space of infinite dimension, then even spectral analysis fails in $C(G,E)$. If, however, $G$ is discrete, has finite torsion free rank and if $E$ is a Banach space of finite dimension, then spectral synthesis holds in $C(G,E)$.
129 - Helge Glockner 2020
For suitable finite-dimensional smooth manifolds M (possibly with various kinds of boundary or corners), locally convex topological vector spaces F and non-negative integers k, we construct continuous linear operators S_n from the space of F-valued k times continuously differentiable functions on M to the corresponding space of smooth functions such that S_n(f) converges to f in C^k(M,F) as n tends to infinity, uniformly for f in compact subsets of C^k(M,F). We also study the existence of continuous linear right inverses for restriction maps from C^k(M,F) to C^k(L,F) if L is a closed subset of M, endowed with a C^k-manifold structure turning the inclusion map from L to M into a C^k-map. Moreover, we construct continuous linear right inverses for restriction operators between spaces of sections in vector bundles in many situations, and smooth local right inverses for restriction operators between manifolds of mappings. We also obtain smoothing results for sections in fibre bundles.
137 - Karsten Kruse 2021
We study Fourier and Laplace transforms for Fourier hyperfunctions with values in a complex locally convex Hausdorff space. Since any hyperfunction with values in a wide class of locally convex Hausdorff spaces can be extended to a Fourier hyperfunct ion, this gives simple notions of asymptotic Fourier and Laplace transforms for vector-valued hyperfunctions, which improves the existing models of Komatsu, Baumer, Lumer and Neubrander and Langenbruch.
This paper deals with the inequalities devoted to the comparison between the norm of a function on a compact hypergroup and the norm of its Fourier coefficients. We prove the classical Paley inequality in the setting of compact hypergroups which furt her gives the Hardy-Littlewood and Hausdorff-Young-Paley (Pitt) inequalities in the noncommutative context. We establish Hormanders $L^p$-$L^q$ Fourier multiplier theorem on compact hypergroups for $1<p leq 2 leq q<infty$ as an application of Hausdorff-Young-Paley inequality. We examine our results for the hypergroups constructed from the conjugacy classes of compact Lie groups and for a class of countable compact hypergroups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا