ﻻ يوجد ملخص باللغة العربية
High Bandwidth Memory (HBM) provides massive aggregated memory bandwidth by exposing multiple memory channels to the processing units. To achieve high performance, an accelerator built on top of an FPGA configured with HBM (i.e., FPGA-HBM platform) needs to scale its performance according to the available memory channels. In this paper, we propose an accelerator for BFS (Breadth-First Search) algorithm, named as ScalaBFS, that builds multiple processing elements to sufficiently exploit the high bandwidth of HBM to improve efficiency. We implement the prototype system of ScalaBFS and conduct BFS in both real-world and synthetic scale-free graphs on Xilinx Alveo U280 FPGA card real hardware. The experimental results show that ScalaBFS scales its performance almost linearly according to the available memory pseudo channels (PCs) from the HBM2 subsystem of U280. By fully using the 32 PCs and building 64 processing elements (PEs) on U280, ScalaBFS achieves a performance up to 19.7 GTEPS (Giga Traversed Edges Per Second). When conducting BFS in sparse real-world graphs, ScalaBFS achieves equivalent GTEPS to Gunrock running on the state-of-art Nvidia V100 GPU that features 64-PC HBM2 (twice memory bandwidth than U280).
Deep Convolutional Neural Networks (CNNs) have become state-of-the art for computer vision and other signal processing tasks due to their superior accuracy. In recent years, large efforts have been made to reduce the computational costs of CNNs in or
With the recent release of High Bandwidth Memory (HBM) based FPGA boards, developers can now exploit unprecedented external memory bandwidth. This allows more memory-bounded applications to benefit from FPGA acceleration. However, we found that it is
FPGAs have become emerging computing infrastructures for accelerating applications in datacenters. Meanwhile, high-level synthesis (HLS) tools have been proposed to ease the programming of FPGAs. Even with HLS, irregular data-intensive applications r
Triple Modular Redundancy (TMR) is a suitable fault tolerant technique for SRAM-based FPGA. However, one of the main challenges in achieving 100% robustness in designs protected by TMR running on programmable platforms is to prevent upsets in the rou
The combination of Winograds algorithm and systolic array architecture has demonstrated the capability of improving DSP efficiency in accelerating convolutional neural networks (CNNs) on FPGA platforms. However, handling arbitrary convolution kernel