ﻻ يوجد ملخص باللغة العربية
Detecting human-object interactions (HOI) is an important step toward a comprehensive visual understanding of machines. While detecting non-temporal HOIs (e.g., sitting on a chair) from static images is feasible, it is unlikely even for humans to guess temporal-related HOIs (e.g., opening/closing a door) from a single video frame, where the neighboring frames play an essential role. However, conventional HOI methods operating on only static images have been used to predict temporal-related interactions, which is essentially guessing without temporal contexts and may lead to sub-optimal performance. In this paper, we bridge this gap by detecting video-based HOIs with explicit temporal information. We first show that a naive temporal-aware variant of a common action detection baseline does not work on video-based HOIs due to a feature-inconsistency issue. We then propose a simple yet effective architecture named Spatial-Temporal HOI Detection (ST-HOI) utilizing temporal information such as human and object trajectories, correctly-localized visual features, and spatial-temporal masking pose features. We construct a new video HOI benchmark dubbed VidHOI where our proposed approach serves as a solid baseline.
We propose HOI Transformer to tackle human object interaction (HOI) detection in an end-to-end manner. Current approaches either decouple HOI task into separated stages of object detection and interaction classification or introduce surrogate interac
We introduce D3D-HOI: a dataset of monocular videos with ground truth annotations of 3D object pose, shape and part motion during human-object interactions. Our dataset consists of several common articulated objects captured from diverse real-world s
Human-Object Interaction (HOI) consists of human, object and implicit interaction/verb. Different from previous methods that directly map pixels to HOI semantics, we propose a novel perspective for HOI learning in an analytical manner. In analogy to
This paper revisits human-object interaction (HOI) recognition at image level without using supervisions of object location and human pose. We name it detection-free HOI recognition, in contrast to the existing detection-supervised approaches which r
For a given video-based Human-Object Interaction scene, modeling the spatio-temporal relationship between humans and objects are the important cue to understand the contextual information presented in the video. With the effective spatio-temporal rel