ﻻ يوجد ملخص باللغة العربية
Studying distributed computing through the lens of algebraic topology has been the source of many significant breakthroughs during the last two decades, especially in the design of lower bounds or impossibility results for deterministic algorithms. This paper aims at studying randomized synchronous distributed computing through the lens of algebraic topology. We do so by studying the wide class of (input-free) symmetry-breaking tasks, e.g., leader election, in synchronous fault-free anonymous systems. We show that it is possible to redefine solvability of a task locally, i.e., for each simplex of the protocol complex individually, without requiring any global consistency. However, this approach has a drawback: it eliminates the topological aspect of the computation, since a single facet has a trivial topological structure. To overcome this issue, we introduce a projection $pi$ of both protocol and output complexes, where every simplex $sigma$ is mapped to a complex $pi(sigma)$; the later has a rich structure that replaces the structure we lost by considering one single facet at a time. To show the significance and applicability of our topological approach, we derive necessary and sufficient conditions for solving leader election in synchronous fault-free anonymous shared-memory and message-passing models. In both models, we consider scenarios in which there might be correlations between the random values provided to the nodes. In particular, different parties might have access to the same randomness source so their randomness is not independent but equal. Interestingly, we find that solvability of leader election relates to the number of parties that possess correlated randomness, either directly or via their greatest common divisor, depending on the specific communication model.
A graph is weakly $2$-colored if the nodes are labeled with colors black and white such that each black node is adjacent to at least one white node and vice versa. In this work we study the distributed computational complexity of weak $2$-coloring in
Maximum weight matching is one of the most fundamental combinatorial optimization problems with a wide range of applications in data mining and bioinformatics. Developing distributed weighted matching algorithms is challenging due to the sequential n
A fundamental problem in distributed computing is the task of cooperatively executing a given set of $t$ tasks by $p$ processors where the communication medium is dynamic and subject to failures. The dynamics of the communication medium lead to group
Modeling distributed computing in a way enabling the use of formal methods is a challenge that has been approached from different angles, among which two techniques emerged at the turn of the century: protocol complexes, and directed algebraic topolo
This paper shows for the first time that distributed computing can be both reliable and efficient in an environment that is both highly dynamic and hostile. More specifically, we show how to maintain clusters of size $O(log N)$, each containing more