ﻻ يوجد ملخص باللغة العربية
In the 35 years since the discovery of cuprate superconductors, we have not yet reached a unified understanding of their properties, including their material dependence of the superconducting transition temperature $T_{text{c}}$. The preceding theoretical and experimental studies have provided an overall picture of the phase diagram, and some important parameters for the $T_{text{c}}$, such as the contribution of the Cu $d_{z^2}$ orbital to the Fermi surface and the site-energy difference $Delta_{dp}$ between the Cu $d_{x^2-y^2}$ and O $p$ orbitals. However, they are somewhat empirical and limited in scope, always including exceptions, and do not provide a comprehensive view of the series of cuprates. Here we propose a four-band $d$-$p$ model as a minimal model to study material dependence in cuprates. Using the variational Monte Carlo method, we theoretically investigate the phase diagram for the La$_2$CuO$_4$ and HgBa$_2$CuO$_4$ systems and the correlation between the key parameters and the superconductivity. Our results comprehensively account for the empirical correlation between $T_{text{c}}$ and model parameters, and thus can provide a guideline for new material design. We also show that the effect of the nearest-neighbor $d$-$d$ Coulomb interaction $V_{dd}$ is actually quite important for the stability of superconductivity and phase competition.
X-ray absorption spectra on the overdoped high-temperature superconductors Tl_2Ba_2CuO_{6+delta} (Tl-2201) and La_{2-x}Sr_xCuO_{4+delta} (LSCO) reveal a striking departure in the electronic structure from that of the underdoped regime. The upper Hubb
A d-wave superconductor, its phase coherence progressively destroyed by unbinding of vortex-antivortex pairs, suffers an instability related to chiral symmetry breaking in two-flavor QED$_3$. The chiral manifold exhibits large degeneracy spanned by p
A model of charged hole-pair bosons, with long range Coulomb interactions and very weak interlayer coupling, is used to calculate the order parameter -Phi- of underdoped cuprates. Model parameters are extracted from experimental superfluid densities
Taking the spin-fermion model as the starting point for describing the cuprate superconductors, we obtain an effective nonlinear sigma-field hamiltonian, which takes into account the effect of doping in the system. We obtain an expression for the spi
We report microwave cavity perturbation measurements of the temperature dependence of the penetration depth, lambda(T), and conductivity, sigma(T) of Pr_{2-x}Ce_{x}CuO_{4-delta} (PCCO) crystals, as well as parallel-plate resonator measurements of lam