ﻻ يوجد ملخص باللغة العربية
Satellite remote sensing is playing an increasing role in the rapid mapping of damage after natural disasters. In particular, synthetic aperture radar (SAR) can image the Earths surface and map damage in all weather conditions, day and night. However, current SAR damage mapping methods struggle to separate damage from other changes in the Earths surface. In this study, we propose a novel approach to damage mapping, combining deep learning with the full time history of SAR observations of an impacted region in order to detect anomalous variations in the Earths surface properties due to a natural disaster. We quantify Earth surface change using time series of Interferometric SAR coherence, then use a recurrent neural network (RNN) as a probabilistic anomaly detector on these coherence time series. The RNN is first trained on pre-event coherence time series, and then forecasts a probability distribution of the coherence between pre- and post-event SAR images. The difference between the forecast and observed co-event coherence provides a measure of the confidence in the identification of damage. The method allows the user to choose a damage detection threshold that is customized for each location, based on the local behavior of coherence through time before the event. We apply this method to calculate estimates of damage for three earthquakes using multi-year time series of Sentinel-1 SAR acquisitions. Our approach shows good agreement with observed damage and quantitative improvement compared to using pre- to co-event coherence loss as a damage proxy.
Small disturbances can trigger functional breakdowns in complex systems. A challenging task is to infer the structural cause of a disturbance in a networked system, soon enough to prevent a catastrophe. We present a graph neural network approach, bor
The aim of this paper is to map agricultural crops by classifying satellite image time series. Domain experts in agriculture work with crop type labels that are organised in a hierarchical tree structure, where coarse classes (like orchards) are subd
Time series prediction can be generalized as a process that extracts useful information from historical records and then determines future values. Learning long-range dependencies that are embedded in time series is often an obstacle for most algorit
Earthquakes can be detected by matching spatial patterns or phase properties from 1-D seismic waves. Current earthquake detection methods, such as waveform correlation and template matching, have difficulty detecting anomalous earthquakes that are no
Multivariate time series with missing values are common in areas such as healthcare and finance, and have grown in number and complexity over the years. This raises the question whether deep learning methodologies can outperform classical data imputa