ﻻ يوجد ملخص باللغة العربية
The proliferation of optical, electron, and scanning probe microscopies gives rise to large volumes of imaging data of objects as diversified as cells, bacteria, pollen, to nanoparticles and atoms and molecules. In most cases, the experimental data streams contain images having arbitrary rotations and translations within the image. At the same time, for many cases, small amounts of labeled data are available in the form of prior published results, image collections, and catalogs, or even theoretical models. Here we develop an approach that allows generalizing from a small subset of labeled data with a weak orientational disorder to a large unlabeled dataset with a much stronger orientational (and positional) disorder, i.e., it performs a classification of image data given a small number of examples even in the presence of a distribution shift between the labeled and unlabeled parts. This approach is based on the semi-supervised rotationally invariant variational autoencoder (ss-rVAE) model consisting of the encoder-decoder block that learns a rotationally (and translationally) invariant continuous latent representation of data and a classifier that encodes data into a finite number of discrete classes. The classifier part of the trained ss-rVAE inherits the rotational (and translational) invariances and can be deployed independently of the other parts of the model. The performance of the ss-rVAE is illustrated using the synthetic data sets with known factors of variation. We further demonstrate its application for experimental data sets of nanoparticles, creating nanoparticle libraries and disentangling the representations defining the physical factors of variation in the data. The code reproducing the results is available at https://github.com/ziatdinovmax/Semi-Supervised-VAE-nanoparticles.
In our previous publication (Ref. 1) we have shown that the data for the normalized diffusion coefficient of the polymers, $D_p/D_{p0}$, falls on a master curve when plotted as a function of $h/lambda_d$, where $h$ is the mean interparticle distance
In this work, we propose a simple yet effective meta-learning algorithm in semi-supervised learning. We notice that most existing consistency-based approaches suffer from overfitting and limited model generalization ability, especially when training
We formulate a new problem at the intersectionof semi-supervised learning and contextual bandits,motivated by several applications including clini-cal trials and ad recommendations. We demonstratehow Graph Convolutional Network (GCN), a semi-supervis
While semi-supervised learning (SSL) has received tremendous attentions in many machine learning tasks due to its successful use of unlabeled data, existing SSL algorithms use either all unlabeled examples or the unlabeled examples with a fixed high-
One paradigm for learning from few labeled examples while making best use of a large amount of unlabeled data is unsupervised pretraining followed by supervised fine-tuning. Although this paradigm uses unlabeled data in a task-agnostic way, in contra