ﻻ يوجد ملخص باللغة العربية
The Faddeev equations for the $Xi NN$ bound-state problem are solved where the three $S$=$-2$ baryon-baryon interactions of Julich-Bonn-Munchen chiral EFT, HAL QCD and Nijmegen ESC08c are used. The $T$-matrix $T_{Xi N, Xi N}$ obtained within the original $LambdaLambda$-$Xi N$-$SigmaSigma$ $/$ $Xi N$-$Lambda Sigma$-$SigmaSigma$ coupled-channel framework is employed as an input to the equations. We found no bound state for Julich-Bonn-Munchen chiral EFT and HAL QCD but ESC08c generates a bound state with the total isospin and spin-parity $(T,J^{pi})=(1/2, 3/2^+)$ where the decays into $LambdaLambda N$ are suppressed.
We study the coupled $LambdaLambda nn-Xi^- pnn$ system to check whether the inclusion of channel coupling is able to bind the $LambdaLambda nn$ system. We use a separable potential three-body model of the coupled $LambdaLambda nn - Xi^- pnn$ system a
Solution of the scattering problem turns to be very difficult task both from the formal as well as from the computational point of view. If the last two decades have witnessed decisive progress in ab initio bound state calculations, rigorous solution
We investigate the nonlocal structure of optical model potentials for nucleon-nucleus scattering based on microscopic approaches. To this purpose, emph{in-medium} folding optical potentials are calculated in momentum space and their corresponding coo
We propose a method that allows for the efficient solution of the three-body Faddeev equations in the presence of infinitely rising confinement interactions. Such a method is useful in calculations of nonrelativistic and especially semirelativistic c
In this paper, we study the relativistic effects in a three-body bound state. For this purpose, the relativistic form of the Faddeev equations is solved in momentum space as a function of the Jacobi momentum vectors without using a partial wave decom