ﻻ يوجد ملخص باللغة العربية
In contrast to the oriented bounding boxes, point set representation has great potential to capture the detailed structure of instances with the arbitrary orientations, large aspect ratios and dense distribution in aerial images. However, the conventional point set-based approaches are handcrafted with the fixed locations using points-to-points supervision, which hurts their flexibility on the fine-grained feature extraction. To address these limitations, in this paper, we propose a novel approach to aerial object detection, named Oriented RepPoints. Specifically, we suggest to employ a set of adaptive points to capture the geometric and spatial information of the arbitrary-oriented objects, which is able to automatically arrange themselves over the object in a spatial and semantic scenario. To facilitate the supervised learning, the oriented conversion function is proposed to explicitly map the adaptive point set into an oriented bounding box. Moreover, we introduce an effective quality assessment measure to select the point set samples for training, which can choose the representative items with respect to their potentials on orientated object detection. Furthermore, we suggest a spatial constraint to penalize the outlier points outside the ground-truth bounding box. In addition to the traditional evaluation metric mAP focusing on overlap ratio, we propose a new metric mAOE to measure the orientation accuracy that is usually neglected in the previous studies on oriented object detection. Experiments on three widely used datasets including DOTA, HRSC2016 and UCAS-AOD demonstrate that our proposed approach is effective.
Current state-of-the-art two-stage detectors generate oriented proposals through time-consuming schemes. This diminishes the detectors speed, thereby becoming the computational bottleneck in advanced oriented object detection systems. This work propo
The past decade has witnessed significant progress on detecting objects in aerial images that are often distributed with large scale variations and arbitrary orientations. However most of existing methods rely on heuristically defined anchors with di
Object detection with Transformers (DETR) has achieved a competitive performance over traditional detectors, such as Faster R-CNN. However, the potential of DETR remains largely unexplored for the more challenging task of arbitrary-oriented object de
Recently, the study on object detection in aerial images has made tremendous progress in the community of computer vision. However, most state-of-the-art methods tend to develop elaborate attention mechanisms for the space-time feature calibrations w
Recently, object detection in aerial images has gained much attention in computer vision. Different from objects in natural images, aerial objects are often distributed with arbitrary orientation. Therefore, the detector requires more parameters to e