ﻻ يوجد ملخص باللغة العربية
The generalized cyclotomic binary sequences $S=S(a, b, c)$ with period $n=pq$ have good autocorrelation property where $(a, b, c)in {0, 1}^3$ and $p, q$ are distinct odd primes. For some cases, the sequences $S$ have ideal or optimal autocorrelation. In this paper we determine the autocorrelation distribution and 2-adic complexity of the sequences $S=S(a, b, c)$ for all $(a, b, c)in {0, 1}^3$ in a unified way by using group ring language and a version of quadratic Gauss sums valued in group ring $R=mathbb{Z}[Gamma]$ where $Gamma$ is a cyclic group of order $n$.
The generalized binary sequences of order 2 have been used to construct good binary cyclic codes [4]. The linear complexity of these sequences has been computed in [2]. The autocorrelation values of such sequences have been determined in [1] and [3].
A class of binary sequences with period $2p$ is constructed using generalized cyclotomic classes, and their linear complexity, minimal polynomial over ${mathbb{F}_{{q}}}$ as well as 2-adic complexity are determined using Gauss period and group ring t
Via interleaving Ding-Helleseth-Lam sequences, a class of binary sequences of period $4p$ with optimal autocorrelation magnitude was constructed in cite{W. Su}. Later, Fan showed that the linear complexity of this class of sequences is quite good cit
In cryptography, we hope a sequence over $mathbb{Z}_m$ with period $N$ having larger $m$-adic complexity. Compared with the binary case, the computation of 4-adic complexity of knowing quaternary sequences has not been well developed. In this paper,
The autocorrelation values of two classes of binary sequences are shown to be good in [6]. We study the 2-adic complexity of these sequences. Our results show that the 2-adic complexity of such sequences is large enough to resist the attack of the rational approximation algorithm.