ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of the Autocorrelation Distribution and 2-Adic Complexity of Generalized Cyclotomic Binary Sequences of Order 2 with Period pq

103   0   0.0 ( 0 )
 نشر من قبل Minghui Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The generalized cyclotomic binary sequences $S=S(a, b, c)$ with period $n=pq$ have good autocorrelation property where $(a, b, c)in {0, 1}^3$ and $p, q$ are distinct odd primes. For some cases, the sequences $S$ have ideal or optimal autocorrelation. In this paper we determine the autocorrelation distribution and 2-adic complexity of the sequences $S=S(a, b, c)$ for all $(a, b, c)in {0, 1}^3$ in a unified way by using group ring language and a version of quadratic Gauss sums valued in group ring $R=mathbb{Z}[Gamma]$ where $Gamma$ is a cyclic group of order $n$.



قيم البحث

اقرأ أيضاً

198 - Minghui Yang , Keqin Feng 2020
The generalized binary sequences of order 2 have been used to construct good binary cyclic codes [4]. The linear complexity of these sequences has been computed in [2]. The autocorrelation values of such sequences have been determined in [1] and [3]. Some lower bounds of 2-adic complexity for such sequences have been presented in [5] and [7]. In this paper we determine the exact value of 2-adic complexity for such sequences. Particularly, we improve the lower bounds presented in [5] and [7] and the condition for the 2-adic complexity reaching the maximum value.
A class of binary sequences with period $2p$ is constructed using generalized cyclotomic classes, and their linear complexity, minimal polynomial over ${mathbb{F}_{{q}}}$ as well as 2-adic complexity are determined using Gauss period and group ring t heory. The results show that the linear complexity of these sequences attains the maximum when $pequiv pm 1(bmod~8)$ and is equal to {$p$+1} when $pequiv pm 3(bmod~8)$ over extension field. Moreover, the 2-adic complexity of these sequences is maximum. According to Berlekamp-Massey(B-M) algorithm and the rational approximation algorithm(RAA), these sequences have quite good cryptographyic properties in the aspect of linear complexity and 2-adic complexity.
Via interleaving Ding-Helleseth-Lam sequences, a class of binary sequences of period $4p$ with optimal autocorrelation magnitude was constructed in cite{W. Su}. Later, Fan showed that the linear complexity of this class of sequences is quite good cit e{C. Fan}. Recently, Sun et al. determined the upper and lower bounds of the 2-adic complexity of such sequences cite{Y. Sun3}. We determine the exact value of the 2-adic complexity of this class of sequences. The results show that the 2-adic complexity of this class of binary sequences is close to the maximum.
In cryptography, we hope a sequence over $mathbb{Z}_m$ with period $N$ having larger $m$-adic complexity. Compared with the binary case, the computation of 4-adic complexity of knowing quaternary sequences has not been well developed. In this paper, we determine the 4-adic complexity of the quaternary cyclotomic sequences with period 2$p$ defined in [6]. The main method we utilized is a quadratic Gauss sum $G_{p}$ valued in $mathbb{Z}_{4^N-1}$ which can be seen as a version of classical quadratic Gauss sum. Our results show that the 4-adic complexity of this class of quaternary cyclotomic sequences reaches the maximum if $5 mid p-2$ and close to the maximum otherwise.
The autocorrelation values of two classes of binary sequences are shown to be good in [6]. We study the 2-adic complexity of these sequences. Our results show that the 2-adic complexity of such sequences is large enough to resist the attack of the rational approximation algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا