ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopy of the local density-of-states in nanowires using integrated quantum dots

52   0   0.0 ( 0 )
 نشر من قبل Christian Schoenenberger
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In quantum dot (QD) electron transport experiments additional features can appear in the differential conductance $dI/dV$ that do not originate from discrete states in the QD, but rather from a modulation of the density-of-states (DOS) in the leads. These features are particularly pronounced when the leads are strongly confined low dimensional systems, such as in a nanowire (NW) where transport is one-dimensional and quasi-zero dimensional lead-states can emerge. In this paper we study such lead-states in InAs NWs. We use a QD integrated directly into the NW during the epitaxial growth as an energetically and spatially well-defined tunnel probe to perform $dI/dV$ spectroscopy of discrete bound states in the `left and `right NW lead segments. By tuning a sidegate in close proximity of one lead segment, we can distinguish transport features related to the modulation in the lead DOS and to excited states in the QD. We implement a non-interacting capacitance model and derive expressions for the slopes of QD and lead resonances that appear in two-dimensional plots of $dI/dV$ as a function of source-drain bias and gate voltage in terms of the different lever arms determined by the capacitive couplings. We discuss how the interplay between the lever arms affect the slopes. We verify our model by numerically calculating the $dI/dV$ using a resonant tunneling model with three non-interacting quantum dots in series. Finally, we used the model to describe the measured $dI/dV$ spectra and extract quantitatively the tunnel couplings of the lead segments. Our results constitute an important step towards a quantitative understanding of normal and superconducting subgap states in hybrid NW devices.



قيم البحث

اقرأ أيضاً

The superconducting proximity effect has been the focus of significant research efforts over many years and has recently attracted renewed interest as the basis of topologically non-trivial states in materials with a large spin orbit interaction, wit h protected boundary states useful for quantum information technologies. However, spectroscopy of these states is challenging because of the limited spatial and energetic control of conventional tunnel barriers. Here, we report electronic spectroscopy measurements of the proximity gap in a semiconducting indium arsenide (InAs) nanowire (NW) segment coupled to a superconductor (SC), using a spatially separated quantum dot (QD) formed deterministically during the crystal growth. We extract the characteristic parameters describing the proximity gap which is suppressed for lower electron densities and fully developed for larger ones. This gate-tunable transition of the proximity effect can be understood as a transition from the long to the short junction regime of subgap bound states in the NW segment. Our device architecture opens up the way to systematic, unambiguous spectroscopy studies of subgap bound states, such as Majorana bound states.
We study the absorption and emission polarization of single semiconductor quantum dots in semiconductor nanowires. We show that the polarization of light absorbed or emitted by a nanowire quantum dot strongly depends on the orientation of the nanowir e with respect to the directions along which light is incident or emitted. Light is preferentially linearly polarized when directed perpendicular to the nanowire elongation. In contrast, the degree of linear polarization is low for light directed along the nanowire. This result is vital for photonic applications based on intrinsic properties of quantum dots, such as generation of entangled photons. As an example, we demonstrate optical access to the spin states of a single nanowire quantum dot.
We have performed time-resolved spectroscopy on InAs quantum dot ensembles in photonic crystal membranes. The influence of the photonic crystal is investigated by varying the lattice constant systematically. We observe a strong slow down of the quant um dots spontaneous emission rates as the two-dimensional bandgap is tuned through their emission frequencies. The measured band edges are in full agreement with theoretical predictions. We characterize the multi-exponential decay curves by their mean decay time and find enhancement of the spontaneous emission at the bandgap edges and strong inhibition inside the bandgap in good agreement with local density of states calculations.
We study an analytical model of a Rashba nanowire that is partially covered by and coupled to a thin superconducting layer, where the uncovered region of the nanowire forms a quantum dot. We find that, even if there is no topological superconducting phase possible, there is a trivial Andreev bound state that becomes pinned exponentially close to zero energy as a function of magnetic field strength when the length of the quantum dot is tuned with respect to its spin-orbit length such that a resonance condition of Fabry-Perot type is satisfied. In this case, we find that the Andreev bound state remains pinned near zero energy for Zeeman energies that exceed the characteristic spacing between Andreev bound state levels but that are smaller than the spin-orbit energy of the quantum dot. Importantly, as the pinning of the Andreev bound state depends only on properties of the quantum dot, we conclude that this behavior is unrelated to topological superconductivity. To support our analytical model, we also perform a numerical simulation of a hybrid system while explicitly incorporating a thin superconducting layer, showing that all qualitative features of our analytical model are also present in the numerical results.
Motivated by recent high-resolution scanning tunneling microscopy (STM) experiments in the quantum Hall regime both on massive two-dimensional electron gas and on graphene, we consider theoretically the disorder averaged nonlocal correlations of the local density of states (LDoS) for electrons moving in a smooth disordered potential in the presence of a high magnetic field. The intersection of two quantum cyclotron rings around the two different positions of the STM tip, correlated by the local disorder, provides peaks in the spatial dispersion of the LDoS-LDoS correlations when the intertip distance matches the sum of the two quantum Larmor radii. The energy dependence displays also complex behavior: for the local LDoS-LDoS average (i.e., at coinciding tip positions), sharp positive correlations are obtained for tip voltages near Landau level, and weak anticorrelations otherwise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا