ترغب بنشر مسار تعليمي؟ اضغط هنا

Rigidity of four-dimensional Gradient shrinking Ricci solitons

94   0   0.0 ( 0 )
 نشر من قبل Detang Zhou
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $(M, g, f)$ be a $4$-dimensional complete noncompact gradient shrinking Ricci soliton with the equation $Ric+ abla^2f=lambda g$, where $lambda$ is a positive real number. We prove that if $M$ has constant scalar curvature $S=2lambda$, it must be a quotient of $mathbb{S}^2times mathbb{R}^2$. Together with the known results, this implies that a $4$-dimensional complete gradient shrinking Ricci soliton has constant scalar curvature if and only if it is rigid, that is, it is either Einstein, or a finite quotient of Gaussian shrinking soliton $Bbb{R}^4$, $Bbb{S}^{2}timesBbb{R}^{2}$ or $Bbb{S}^{3}timesBbb{R}$.



قيم البحث

اقرأ أيضاً

In this article, we study four-dimensional complete gradient shrinking Ricci solitons. We prove that a four-dimensional complete gradient shrinking Ricci soliton satisfying a pointwise condition involving either the self-dual or anti-self-dual part o f the Weyl tensor is either Einstein, or a finite quotient of either the Gaussian shrinking soliton $Bbb{R}^4,$ or $Bbb{S}^{3}timesBbb{R}$, or $Bbb{S}^{2}timesBbb{R}^{2}.$ In addition, we provide some curvature estimates for four-dimensional complete gradient Ricci solitons assuming that its scalar curvature is suitable bounded by the potential function.
96 - Giovanni Catino 2018
We classify four-dimensional shrinking Ricci solitons satisfying $Sec geq frac{1}{24} R$, where $Sec$ and $R$ denote the sectional and the scalar curvature, respectively. They are isometric to either $mathbb{R}^{4}$ (and quotients), $mathbb{S}^{4}$, $mathbb{RP}^{4}$ or $mathbb{CP}^{2}$ with their standard metrics.
276 - Lei Ni , Nolan Wallach 2007
In this paper we classify the four dimensional gradient shrinking solitons under certain curvature conditions satisfied by all solitons arising from finite time singularities of Ricci flow on compact four manifolds with positive isotropic curvature. As a corollary we generalize a result of Perelman on three dimensional gradient shrinking solitons to dimension four.
In this paper we consider $4$-dimensional steady soliton singularity models, i.e., complete steady gradient Ricci solitons that arise as the rescaled limit of a finite time singular solution of the Ricci flow on a closed $4$-manifold. In particular, we study the geometry at infinity of such Ricci solitons under the assumption that their tangent flow at infinity is the product of $mathbb{R}$ with a $3$-dimensional spherical space form. We also classify the tangent flows at infinity of $4$-dimensional steady soliton singularity models in general.
In this paper, we study constant weighted mean curvature hypersurfaces in shrinking Ricci solitons. First, we show that a constant weighted mean curvature hypersurface with finite weighted volume cannot lie in a region determined by a special level s et of the potential function, unless it is the level set. Next, we show that a compact constant weighted mean curvature hypersurface with a certain upper bound or lower bound on the mean curvature is a level set of the potential function. We can apply both results to the cylinder shrinking Ricci soliton ambient space. Finally, we show that a constant weighted mean curvature hypersurface in the Gaussian shrinking Ricci soliton (not necessarily properly immersed) with a certain assumption on the integral of the second fundamental form must be a generalized cylinder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا