ﻻ يوجد ملخص باللغة العربية
We give a derivation for the value of inf-sup constant for the bilinear form (p, div u). We prove that the value of inf-sup constant is equal to 1.0 in all cases and is independent of the size and shape of the domain. Numerical tests for validation of inf-sup constants is performed using finite dimensional spaces defined in cite{2020jain} on two test domains i) a square of size $Omega = [0,1]^2$, ii) a square of size $Omega = [0,2]^2$, for varying mesh sizes and polynomial degrees. The numeric values are in agreement with the theoretical value of inf-sup term.
This paper is in relation with a Note of Comptes Rendus de lAcademie des Sciences 2005. We have an idea about a lower bounds of sup+inf (2 dimensions) and sup*inf (dimensions >2).
We prove an a priori estimate of type sup*inf on Riemannian manifold of dimension 3 (not necessarily compact).
We present a class of discretisation spaces and H(div)-conformal elements that can be built on any polytope. Bridging the flexibility of the Virtual Element spaces towards the elements shape with the divergence properties of the Raviart-Thomas elemen
In this paper, we present an interpolation framework for structure-preserving model order reduction of parametric bilinear dynamical systems. We introduce a general setting, covering a broad variety of different structures for parametric bilinear sys
In this paper, we extend the structure-preserving interpolatory model reduction framework, originally developed for linear systems, to structured bilinear control systems. Specifically, we give explicit construction formulae for the model reduction b