ﻻ يوجد ملخص باللغة العربية
Graph embedding is essential for graph mining tasks. With the prevalence of graph data in real-world applications, many methods have been proposed in recent years to learn high-quality graph embedding vectors various types of graphs. However, most existing methods usually randomly select the negative samples from the original graph to enhance the training data without considering the noise. In addition, most of these methods only focus on the explicit graph structures and cannot fully capture complex semantics of edges such as various relationships or asymmetry. In order to address these issues, we propose a robust and generalized framework for adversarial graph embedding based on generative adversarial networks. Inspired by generative adversarial network, we propose a robust and generalized framework for adversarial graph embedding, named AGE. AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution, and enables the discriminator and generator to jointly learn each nodes robust and generalized representation. Based on this framework, we propose three models to handle three types of graph data and derive the corresponding optimization algorithms, i.e., UG-AGE and DG-AGE for undirected and directed homogeneous graphs, respectively, and HIN-AGE for heterogeneous information networks. Extensive experiments show that our methods consistently and significantly outperform existing state-of-the-art methods across multiple graph mining tasks, including link prediction, node classification, and graph reconstruction.
With the success of the graph embedding model in both academic and industry areas, the robustness of graph embedding against adversarial attack inevitably becomes a crucial problem in graph learning. Existing works usually perform the attack in a whi
Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the
Graph is a natural representation of data for a variety of real-word applications, such as knowledge graph mining, social network analysis and biological network comparison. For these applications, graph embedding is crucial as it provides vector rep
Heterogeneous information networks(HINs) become popular in recent years for its strong capability of modelling objects with abundant information using explicit network structure. Network embedding has been proved as an effective method to convert inf
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Altho