ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear masses in extended kernel ridge regression with odd-even effects

66   0   0.0 ( 0 )
 نشر من قبل Xinhui Wu
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The kernel ridge regression (KRR) approach is extended to include the odd-even effects in nuclear mass predictions by remodulating the kernel function without introducing new weight parameters and inputs in the training network. By taking the WS4 mass model as an example, the mass for each nucleus in the nuclear chart is predicted with the extended KRR network, which is trained with the mass model residuals, i.e., deviations between experimental and calculated masses, of other nuclei with known masses. The resultant root-mean-square mass deviation from the available experimental data for the 2353 nuclei with $Zge8$ and $Nge8$ can be reduced to 128 keV, which provides the most precise mass model from machine learning approaches so far. Moreover, the extended KRR approach can avoid the risk of worsening the mass predictions for nuclei at large extrapolation distances, and meanwhile, it provides a smooth extrapolation behavior with respect to the odd and even extrapolation distances.



قيم البحث

اقرأ أيضاً

A unified theoretical model reproducing charge radii of known atomic nuclei plays an essential role to make extrapolations in the regions of unknown nuclear size. Recently developed new ansatz which phenomenally takes into account the neutron-proton short-range correlations (np-SRCs) can describe the discontinuity properties and odd-even staggering (OES) effect of charge radii along isotopic chains remarkably well. In this work, we further review the modified rms charge radii formula in the framework of relativistic mean field (RMF) theory. The charge radii are calculated along various isotopic chains that include the nuclei featuring the $N=50$ and $82$ magic shells. Our results suggest that RMF with and without considering correction term give almost similar trend of nuclear size for some isotopic chains with open proton shell, especially the shrink phenomena of charge radii at strong neutron closed shells and the OES behaviors. This suggests that the np-SRCs has almost no influence for some nuclei due to the strong coupling between different levels around Fermi surface. The weakening OES behavior of nuclear charge radii is observed generally at completely filled neutron shells and this may be proposed as a signature of magic indicator.
The FRS-ESR facility at GSI provides unique conditions for precision measurements of large areas on the nuclear mass surface in a single experiment. Values for masses of 604 neutron-deficient nuclides (30<=Z<=92) were obtained with a typical uncertai nty of 30 microunits. The masses of 114 nuclides were determined for the first time. The odd-even staggering (OES) of nuclear masses was systematically investigated for isotopic chains between the proton shell closures at Z=50 and Z=82. The results were compared with predictions of modern nuclear models. The comparison revealed that the measured trend of OES is not reproduced by the theories fitted to masses only. The spectral pairing gaps extracted from models adjusted to both masses, and density related observables of nuclei agree better with the experimental data.
We explore the systematics of odd-even mass staggering with a view to identifying the physical mechanisms responsible. The BCS pairing and mean field contributions have A- and number parity dependencies which can help disentangle the different contri butions. This motivates the two-term parametrization c_1 + c_2/A as a theoretically based alternative to the inverse power form traditionally used to fit odd-even mass differences. Assuming that the A-dependence of the BCS pairing is weak, we find that mean-field contributions are dominant below mass number A~40 while BCS pairing dominates in heavier nuclei.
``Beat patterns are shown to appear in the octupole bands of several actinides and rare earths, their appearance being independent from the formula used in order to isolate and demonstrate them. It is shown that the recent formalism, making use of di screte approximations to derivatives of the transition energies (or of the energy levels) gives results consistent with the traditional formulae. In both regions it is seen that the first vanishing of the staggering occurs at higher values of the angular momentum I in nuclei exhibiting higher staggering at low I. Since these nuclei happen to be good rotators, the observed slow decrease of the amplitude of the staggering with increasing I is in good agreement with the parameter independent predictions of the su(3) (rotational) limit of several algebraic models. In the actinides it has been found that within each series of isotopes the odd-even staggering exhibits minima at N=134 and N=146, while a local maximum is shown at N=142, these findings being in agreement with the recent suggestion of a secondary maximum of octupole deformation around N=146.
The properties of the nuclear isoscaling at finite temperature are investigated and the extent to which its parameter $alpha$ holds information on the symmetry energy is examined. We show that, although finite temperature effects invalidate the analy tical formulas that relate the isoscaling parameter $alpha$ to those of the mass formula, the symmetry energy remains the main ingredient that dictates the behavior of $alpha$ at finite temperatures, even for very different sources. This conclusion is not obvious as it is not true in the vanishing temperature limit, where analytical formulas are available. Our results also reveal that different statistical ensembles lead to essentially the same conclusions based on the isoscaling analysis, for the temperatures usually assumed in theoretical calculations in the nuclear multifragmentation process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا