InSbAs two-dimensional electron gases as a platform for topological superconductivity


الملخص بالإنكليزية

Majorana zero modes have been proposed as building blocks for fault-tolerant quantum information processing. They can be realized in semiconductors with strong spin-orbit interaction coupled to a superconductor. Experimental advances in the field of topological superconductivity have often been triggered by the development of new hybrid material systems. Among these, two-dimensional electron gases (2DEGs) are of particular interest due to their inherent design flexibility and scalability. Here we discuss results on a hybrid 2D platform based on a ternary 2DEG (InSbAs) coupled to in-situ grown Aluminum. The spin-orbit coupling in these 2DEGs can be tuned with the As concentration, reaching values up to 400 meV$unicode{xC5}$, thus exceeding typical values measured in its binary constituents. In addition to a large Lande g-factor $sim$ 55 (which is comparable to InSb), we show that the clean superconductor-semiconductor interface leads to highly transparent Josephson junctions and a hard induced superconducting gap in the proximitized semiconductor. Using this new platform we demonstrate the basic operation of phase-controllable Josephson junctions, superconducting islands and quasi-1D systems, prototypical device geometries used to study Majoranas. Our results establish InSbAs/Al 2DEGs as a promising material system to realize topological superconductivity.

تحميل البحث