ترغب بنشر مسار تعليمي؟ اضغط هنا

Quark Nova with the Producing of Color-Flavor Locked Quark Matter

302   0   0.0 ( 0 )
 نشر من قبل Jia-Rui Guo
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Jia-Rui Guo




اسأل ChatGPT حول البحث

In this paper, we suggest that the process in quark nova explosion may exist widely in various kinds of supernova, although it only happens in a small part in the core in most cases. And the contribution to the energy releasing of whole supernova explosion can also be provided by QCD interacting term. In this way we derive a general equation of energy quantity to be released in quark nova process related to several parameters. After quark nova explosion process, the remnant can be a quark star, or a neutron star with quark matter core if this process only happens in a small part inside the compact star instead of a full quark nova. We will also use a more generalized approach to analyse the strangelets released from quark nova and will draw a possible interpretation of why effects caused by strangelets have not been observed yet. Our result suggests that the ordinary matter can only spontaneously transform into strange quark matter by crushing them into high pressure under the extreme condition in compact star, although generally the reaction would really be exergonic.



قيم البحث

اقرأ أيضاً

We construct the nuclear and quark matter equations of state at zero temperature in an effective quark theory (the Nambu-Jona-Lasinio model), and discuss the phase transition between them. The nuclear matter equation of state is based on the quark-di quark description of the single nucleon, while the quark matter equation of state includes the effects of scalar diquark condensation (color superconductivity). The effect of diquark condensation on the phase transition is discussed in detail.
The color-flavor locking phenomenon in the magnetic picture can be the microscopic description of the quark confinement in QCD. We demonstrate it in an N=2 supersymmetric SU(Nc)xSU(Nc) quiver gauge theory coupled to Nf flavors of quarks (Nf<Nc). This model reduces to SU(Nc) gauge theory with Nf flavors when the vacuum expectations value of the link field is much larger than the dynamical scales, and thus provides a continuous deformation of the N=2 supersymmetric QCD. We study a vacuum which survives upon adding a superpotential term to reduce to N=1 while preserving the vectorial SU(Nf) flavor symmetry. We find a region of the parameter space where the confinement is described by the Higgsing of a weakly coupled magnetic SU(Nf)xU(1) gauge theory. The Higgsing locks the quantum numbers of SU(Nf) magnetic color to those of SU(Nf) flavor symmetry, and thus the massive magnetic gauge bosons become the singlet and adjoint representations of the flavor group, i.e, the vector mesons. If the qualitative picture remains valid in non-supersymmetric QCD, one can understand the Hidden Local Symmetry as the magnetic dual description of QCD, and the confining string is identified as the vortex of vector meson fields.
Several attempts have been made in the past decades to search for the true ground state of the dense matter at sufficiently large densities and low temperatures via compact astrophysical objects. Focusing on strange stars, we derive the hydrostatic e quilibrium assuming a maximally symmetric phase of homogeneous superconducting quark matter called the textit{color-flavor-locked} (CFL) phase in the background of energy-momentum squared gravity (EMSG). Theoretical and experimental investigations show that strange quark matter (SQM) in a CFL state can be the true ground state of hadronic matter at least for asymptotic densities, and even if the unequal quark masses. Motivated by these theoretical models, we explore the structure of stellar objects in recently proposed EMSG, which allows a correction term $T_{mu u}T^{mu u}$ in the action functional of the theory. Interestingly, EMSG may be effective to resolve the problems at high energy densities, e.g., relevant to the early universe and dense compact astrophysical objects without invoking some new forms of fluid stress, such as bulk viscosity or scalar fields. Finally, we solve the complicated field equations numerically to obtain the mass-radius relations for strange stars in CFL equation of state.
361 - G.Y.Shao , M.Di Toro , B.Liu 2011
The two-Equation of State (EoS) model is used to describe the hadron-quark phase transition in asymmetric matter formed at high density in heavy-ion collisions. For the quark phase, the three-flavor Nambu--Jona-Lasinio (NJL) effective theory is used to investigate the influence of dynamical quark mass effects on the phase transition. At variance to the MIT-Bag results, with fixed current quark masses, the main important effect of the chiral dynamics is the appearance of an End-Point for the coexistence zone. We show that a first order hadron-quark phase transition may take place in the region T=(50-80)MeV and rho_B=(2-4)rho_0, which is possible to be probed in the new planned facilities, such as FAIR at GSI-Darmstadt and NICA at JINR-Dubna. From isospin properties of the mixed phase somepossible signals are suggested. The importance of chiral symmetry and dynamical quark mass on the hadron-quark phase transition is stressed. The difficulty of an exact location of Critical-End-Point comes from its appearance in a region of competition between chiral symmetry breaking and confinement, where our knowledge of effective QCD theories is still rather uncertain.
Recent indications for high neutron star masses (M sim 2 M_sun) and large radii (R > 12 km) could rule out soft equations of state and have provoked a debate whether the occurence of quark matter in compact stars can be excluded as well. We show that modern quantum field theoretical approaches to quark matter including color superconductivity and a vector meanfield allow a microscopic description of hybrid stars which fulfill the new, strong constraints. For these objects color superconductivity turns out to be an essential ingredient for a successful description of the cooling phenomenology in accordance with recently developed tests. We discuss the energy release in the neutrino untrapping transition as a new aspect of the problem that hybrid stars masquerade themselves as neutron stars. Quark matter searches in future generations of low-temperature/high-density nucleus-nucleus collision experiments such as low-energy RHIC and CBM @ FAIR might face the same problem of an almost crossover behavior of the deconfinement transition. Therefore, diagnostic tools shall be derived from effects of color superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا