ترغب بنشر مسار تعليمي؟ اضغط هنا

Definite Non-Ancestral Relations and Structure Learning

98   0   0.0 ( 0 )
 نشر من قبل Wenyu Chen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In causal graphical models based on directed acyclic graphs (DAGs), directed paths represent causal pathways between the corresponding variables. The variable at the beginning of such a path is referred to as an ancestor of the variable at the end of the path. Ancestral relations between variables play an important role in causal modeling. In existing literature on structure learning, these relations are usually deduced from learned structures and used for orienting edges or formulating constraints of the space of possible DAGs. However, they are usually not posed as immediate target of inference. In this work we investigate the graphical characterization of ancestral relations via CPDAGs and d-separation relations. We propose a framework that can learn definite non-ancestral relations without first learning the skeleton. This frame-work yields structural information that can be used in both score- and constraint-based algorithms to learn causal DAGs more efficiently.



قيم البحث

اقرأ أيضاً

We present the Cholesky-factored symmetric positive definite neural network (SPD-NN) for modeling constitutive relations in dynamical equations. Instead of directly predicting the stress, the SPD-NN trains a neural network to predict the Cholesky fac tor of a tangent stiffness matrix, based on which the stress is calculated in the incremental form. As a result of the special structure, SPD-NN weakly imposes convexity on the strain energy function, satisfies time consistency for path-dependent materials, and therefore improves numerical stability, especially when the SPD-NN is used in finite element simulations. Depending on the types of available data, we propose two training methods, namely direct training for strain and stress pairs and indirect training for loads and displacement pairs. We demonstrate the effectiveness of SPD-NN on hyperelastic, elasto-plastic, and multiscale fiber-reinforced plate problems from solid mechanics. The generality and robustness of the SPD-NN make it a promising tool for a wide range of constitutive modeling applications.
Constraint-based causal discovery from limited data is a notoriously difficult challenge due to the many borderline independence test decisions. Several approaches to improve the reliability of the predictions by exploiting redundancy in the independ ence information have been proposed recently. Though promising, existing approaches can still be greatly improved in terms of accuracy and scalability. We present a novel method that reduces the combinatorial explosion of the search space by using a more coarse-grained representation of causal information, drastically reducing computation time. Additionally, we propose a method to score causal predictions based on their confidence. Crucially, our implementation also allows one to easily combine observational and interventional data and to incorporate various types of available background knowledge. We prove soundness and asymptotic consistency of our method and demonstrate that it can outperform the state-of-the-art on synthetic data, achieving a speedup of several orders of magnitude. We illustrate its practical feasibility by applying it on a challenging protein data set.
Representations in the form of Symmetric Positive Definite (SPD) matrices have been popularized in a variety of visual learning applications due to their demonstrated ability to capture rich second-order statistics of visual data. There exist several similarity measures for comparing SPD matrices with documented benefits. However, selecting an appropriate measure for a given problem remains a challenge and in most cases, is the result of a trial-and-error process. In this paper, we propose to learn similarity measures in a data-driven manner. To this end, we capitalize on the alphabeta-log-det divergence, which is a meta-divergence parametrized by scalars alpha and beta, subsuming a wide family of popular information divergences on SPD matrices for distinct and discrete values of these parameters. Our key idea is to cast these parameters in a continuum and learn them from data. We systematically extend this idea to learn vector-valued parameters, thereby increasing the expressiveness of the underlying non-linear measure. We conjoin the divergence learning problem with several standard tasks in machine learning, including supervised discriminative dictionary learning and unsupervised SPD matrix clustering. We present Riemannian gradient descent schemes for optimizing our formulations efficiently, and show the usefulness of our method on eight standard computer vision tasks.
In settings ranging from weather forecasts to political prognostications to financial projections, probability estimates of future binary outcomes often evolve over time. For example, the estimated likelihood of rain on a specific day changes by the hour as new information becomes available. Given a collection of such probability paths, we introduce a Bayesian framework -- which we call the Gaussian latent information martingale, or GLIM -- for modeling the structure of dynamic predictions over time. Suppose, for example, that the likelihood of rain in a week is 50%, and consider two hypothetical scenarios. In the first, one expects the forecast is equally likely to become either 25% or 75% tomorrow; in the second, one expects the forecast to stay constant for the next several days. A time-sensitive decision-maker might select a course of action immediately in the latter scenario, but may postpone their decision in the former, knowing that new information is imminent. We model these trajectories by assuming predictions update according to a latent process of information flow, which is inferred from historical data. In contrast to general methods for time series analysis, this approach preserves the martingale structure of probability paths and better quantifies future uncertainties around probability paths. We show that GLIM outperforms three popular baseline methods, producing better estimated posterior probability path distributions measured by three different metrics. By elucidating the dynamic structure of predictions over time, we hope to help individuals make more informed choices.
Crucial for building trust in deep learning models for critical real-world applications is efficient and theoretically sound uncertainty quantification, a task that continues to be challenging. Useful uncertainty information is expected to have two k ey properties: It should be valid (guaranteeing coverage) and discriminative (more uncertain when the expected risk is high). Moreover, when combined with deep learning (DL) methods, it should be scalable and affect the DL model performance minimally. Most existing Bayesian methods lack frequentist coverage guarantees and usually affect model performance. The few available frequentist methods are rarely discriminative and/or violate coverage guarantees due to unrealistic assumptions. Moreover, many methods are expensive or require substantial modifications to the base neural network. Building upon recent advances in conformal prediction [13, 31] and leveraging the classical idea of kernel regression, we propose Locally Valid and Discriminative predictive intervals (LVD), a simple, efficient, and lightweight method to construct discriminative predictive intervals (PIs) for almost any DL model. With no assumptions on the data distribution, such PIs also offer finite-sample local coverage guarantees (contrasted to the simpler marginal coverage). We empirically verify, using diverse datasets, that besides being the only locally valid method, LVD also exceeds or matches the performance (including coverage rate and prediction accuracy) of existing uncertainty quantification methods, while offering additional benefits in scalability and flexibility.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا